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ABSTRACT. In this paper, a reduced-order modeling(ROM) of Burgers equations is studied

based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthog-

onal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the

pseudo-spectral element collocation method is adopted to solve linearlized equation based on

the Newton method in spatial discretization. We deliver POD-based algorithm and present some

numerical experiments to show the efficiency of our proposed method.

1. INTRODUCTION

When we try to get the approximate solutions in computing of some high order modeling

problems such as fluid dynamics or real time feedback control problems, sometimes we meet

very high cost of computations or even we feel a deficiency in our resources of computational

environment. For these kinds of situations people have considered reduced order modeling

which means deriving low order modeling instead of high order modeling using some tactics

or methods, and one of which is the proper orthogonal decomposition method. The reason of

why we think of proper orthogonal decomposition method in reduced order modeling is that we

suppose the solutions of the main system of dynamics be represented by the linear combinations

of a basis, and by POD-basis it is possible that the degrees of freedom of the main system of

dynamics be reduced. There are many applications of proper orthogonal decomposition method

in numerical simulations for some complex dynamic systems or high order modeling.([1], [2],

[3], [4])
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Burgers equation is a simplified version of Navier-Stokes equations, which is considered as

a turbulence free cartoon for Navier-Stokes equations([5]). Let Ω be (0, 1). We consider the

one dimensional homogeneous Burgers equation:

⎧⎪⎨⎪⎩
∂u

∂t
(t, x) + u(t, x)

∂u

∂x
(t, x)− ν

∂2u

∂x2
(t, x) = f(t, x) in Ω× [0, T ],

u(t, x) = 0 on ∂Ω× [0, T ],
u(0, x) = u0(x) in Ω,

(1.1)

where ν is a viscosity diffusion coefficient, T > 0, u0 is a given continuous initial condition

and f is a continuous forcing term. There are many researches about Burgers equation by

finite element approximations. ([6], [7], [8], [9]) Here we provide pseudo-spectral collocation

approximation for Burgers equation and extend it to spectral element collocation method using

the idea given in ([6], [10]). The spectral method is known to be a very accurate method so that

it is worthwhile to develop the Legendre/Chebyshev pseudo-spectral collocation method for

solving Burgers equation. In this paper we provide an algorithm for Legendre case. One may

easily get an algorithm for Chebyshev case. Then we investigate reduced order modeling using

POD-basis in order to reduce the computational cost of pseudo-spectral element collocation

approximation.

Our main goal is focused on how to get a better reduced order solution by questioning

how many generators of the POD-basis would be suitable for the best or for the most efficient

approximation to the solutions in ROM. In this context also we study about getting ‘a smallest

but best adequate’ sets of snapshots from which we organize POD-basis. Of course, as the

much abundant set of snapshots we prepare and start from, the more effective set of POD

generators we can obtain. And as the size of the POD-basis is increasing, the same is the

size of the reduced order system. For this reason ‘choosing how many generators of a given

POD-basis’ is not less important in ROM.

Burgers equation is a well-known nonlinear partial differential equation. We apply the

Newton’s method to get the linearized systems and we use implicit time step Crank-Nicolson

scheme to discretize time step solution. We examine the numerical efficiency of POD-used

ROM tactics and idea. As it is mentioned above, we mainly focus on getting an efficient and

compact set of snapshots and choosing reasonable set of POD generator functions. For the

organization of POD-basis we apply singular value decomposition(SVD) which have actively

been used in many areas of scientific research.([3], [4], [11]) When we apply SVD to derive

ROM basis set, we regard the sample space is identified with snapshots which be rearranged as

column-wisely into a rectangular matrix. See [2],[3], [4], [11], [12] for more details.

For the numerical simulation of ROM we approximate the system and solutions by pseudo-

spectral element collocation method for the spatial discretization and we apply Newton’s iter-

ation scheme to get linearized system, which is given in section 2, and section 3 is organized

for some short preliminaries about proper orthogonal decomposition and the actual applica-

tion of ROM to the system of pseudo-spectral method given in section 2. And the numerical

experiments are in section 4.
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2. PSEUDO-SPECTRAL COLLOCATION METHOD

In this paper, we provide an algorithm to solve Burgers equations (1.1) based on Legendre

spectral collocation method using Legendre-Gauss-Lobatto points as the collocation points.

Then it will be easily extended to one dimensional spectral element method using the idea

given in [13].

Let Ω = (0, 1) and let N be a positive integer. Let P 0
N be the space of all polynomials

defined on [0, 1] of degree less than or equal to N satisfying the homogeneous boundary condi-

tions. Denote by Π = {ξi}Ni=0 the Legendre-Gauss-Lobatto(LGL) points which are the zeros of

(1−x2)L′
N (x) where LN is the N -th Legendre polynomial. The spatial semi-discrete pseudo-

spectral collocation approximate problem of (1.1) can be written as follows([14], [15], [16]):

for each t ∈ [0, T ] find a function uN (t, ·) ∈ P 0
N such that⎧⎪⎨⎪⎩

d

dt
uN (t, ξ) + uN (t, ξ) ∂NuN (t, ξ)− ν ∂2

NuN (t, ξ) = f(t, ξ), ξ ∈ Π,

uN (t, 0) = uN (t, 1) = 0,
uN (0, ξ) = u0(ξ), ξ ∈ Π

(2.1)

where ∂N denotes by the Legendre pseudo-spectral differentiation.

Now, we apply the implicit time step Crank-Nicolson scheme to solve each time step solu-

tion. Let M be a positive integer and set

tn := nΔt (n = 0, 1, 2, · · · ,M) with Δt =
T

M
.

Denote by unN (·) = uN (tn, ·). Now, we have the full discretized approximation for solving

Burgers equation (1.1) as follows: for all ξ ∈ Π,

un+1
N − unN

Δt
=

1

2

(
ν ∂2

Nun+1
N − un+1

N ∂Nun+1
N

)
+

1

2

(
ν ∂2

NunN − unN∂NunN

)
+

1

2

(
fn+1 + fn

)
.

On the other hand, considering the linearization of the above equation by Newton iteration

method, we define

NN (un+1
N ) =

(
− ν ∂2

N +
2

Δt

)
un+1
N + un+1

N ∂Nun+1
N −FN

where

FN =
(
ν ∂2

N +
2

Δt

)
unN − unN∂NunN + fn+1 + fn.

Then the full discretized problem of the Burgers equation (1.1) is to find an approximate solu-

tion un+1
N ∈ P 0

N for (n+ 1)th time-step of the following nonlinear equation:

NN (un+1
N ) = 0. (2.2)

The Newton iteration to solve the above nonlinear equation is as follow: with un+1
N,0 = unN

AN

(
un+1
N,k

)
un+1
N,k+1 = un+1

N,k ∂Nun+1
N,k + FN (k = 1, 2, · · · ) (2.3)
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where unN,k denotes the k-th Newton iteration of unN and

AN

(
un+1
N,k

)
un+1
N,k+1 =

(
− ν ∂2

N +
2

Δt

)
un+1
N,k+1 + un+1

N,k

(
∂Nun+1

N,k+1

)
+
(
∂N un+1

N,k

)
un+1
N,k+1.

Let DN be the Legendre pseudo-spectral differentiation matrix and let

unN (x) =
∑N−1

j=1 unN (ξj)φj(x) ∈ P 0
N where φj (j = 0, 1, · · · , N) are the Lagrange basis

functions with respect to LGL-points Π. We denote by v =
(
v(ξ1), v(ξ2), · · · , v(ξN−1)

)T
the

vector containing the nodal values of a continuous function v. Then the discretized problem of

the Newton iteration (2.3) is to find un+1
N,k+1 satisfying

An+1
N,k un+1

N,k+1 = diag(un+1
N,k )DN un+1

N,k + Fn+1
N (2.4)

where IN denotes the identity matrix,

An+1
N,k = −ν (DN )2 +

2

Δt
IN + diag(un+1

N,k )DN + diag
(
DN un+1

N,k

)
and

Fn+1
N =

(
ν (DN )2 +

2

Δt
IN

)
un
N − diag(un

N )DN un
N + fn+1 + fn.

In order to extend spectral collocation method to spectral element collocation method the

domain is decomposed into multiple sub-domains and then the collocation solution is sought

in each sub-domain. We follow the idea given in [13] and explain briefly for readers. First,

we collocate the Burgers equation at the interior LGL-points of each sub-domain and then

we impose two interface jump conditions at each interface point ξrN = ξr+1
0 of neighborhood

sub-domains Ωr and Ωr+1 :

continuity of function unN : unN,r(ξ
r
N ) = unN,r+1(ξ

r
N ),

and

continuity of normal derivative unN : ∂NunN,r(ξ
r
N ) = ∂NunN,r+1(ξ

r
N ),

where unN,r denotes the restriction of unN on sub-domain Ωr. See [13] for more details.

3. REDUCED ORDER MODELING BY POD

3.1. POD and SVD. The POD provides a basis for the modal decomposition of an ensemble

of functions, such as data obtained in the course of experiments or numerical simulations.

For example, suppose there exists numerical solutions of a time dependent partial differential

equation. The set of numerical solutions of discretized systems composes a snapshot matrix, in

which the columns of the matrix are numerical solutions for each time step. From the matrix,

we can find the numerical modal basis of which the linear combinations yield the column space

of the matrix. See [2], [4], [12], [17] and reference therein.

Here we recall the idea of POD given in [12] as follows. The main idea of the POD is to find

a set of ordered orthonormal basis vectors such that the snapshots can be expressed optimally

using the selected first p basis vectors. The mean square error can be used as a measure for

the optimal problem, i.e., E{‖ x − x(p) ‖2}, where x(p) is an approximate expression of a

random vector x using the first p basis vectors of the undetermined set of orthonormal basis
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vectors in RN . The objective of POD is to find a set of orthonormal vectors {φi}mi=1 in RN

which minimizes the error E{‖ x− x(p) ‖2}, i.e.,

min
φi

ε2(l) = E{‖ x− x(p) ‖2}

s.t. φT
i φj = δij , i, j = 1, 2, ...,m,

where x(p) =

p∑
i=1

yiφi (p ≤ m).

There are three kinds of equivalent POD methods: Principal Component Analysis(PCA),

Karhunen-Loeve Decomposition(KLD), Singular-Value Decomposition(SVD). We will use SVD

in this paper.

Suppose that Ns snapshots x1,x2, · · · ,xNs ∈ RNd are given. We want to find approxima-

tions xi(p) of xi (i = 1, 2, · · · , Ns) using only p(≤ min{Nd, Ns}) orthonormal basis vectors.

The POD method of order p is a method to find p basis vectors which minimizes the total error

ε2(p) =

Ns∑
i=1

‖ xi − xi(p) ‖2 .

Applying the SVD algorithm to X = [x1 x2 · · · xNs ] produces an Nd×Ns diagonal matrix Σ
of singular values in decreasing order and unitary matrices V ∈ RNd×RNd and U ∈ RNs×RNs

satisfying X = V ΣUT , where

Σ =

[
Σm 0
0 0

]
=

⎡⎢⎢⎢⎢⎢⎣
σ1

σ2
. . . 0

σm
0 0

⎤⎥⎥⎥⎥⎥⎦ , (σj > 0, j = 1, 2, · · · ,m).

If we denote the columns of the matrix ΣUT as d1,d2, · · · ,dNs ∈ RNd , then it is easily

shown that xi = V di (i = 1, 2, · · · , Ns) and the components di,m+1, di,m+2, · · · , di,Ns of di

are equal to zeros. Hence we have xi =
∑m

k=1 di,k vk where V = [v1 v2 · · · vNd
]. This

means that each snapshot xi can be represented by the first m columns of the matrix V . The

first m columns of the matrix V is called the POD-basis and the first p columns of V , denote

by Vp, is called the POD-basis of order p, (p ≤ m). In this case, the total error is given by

ε(p)2 =
∑m

j=p+1 σ2
j . See [12].

3.2. Approximate solution by POD-basis of order p. In this paper we use the discrete ver-

sion of POD method as follows. Let Nd be the dimension of approximate spatial space to solve

Burgers equation, e.g., spectral element space with d sub-domains. Using the spectral element

collocation method, the problem (2.4) is reformulated as follows.

Find the (k + 1)-th Newton iteration un+1
k+1 ∈ RNd at (n+ 1)-th time step satisfying

An+1
Nd,k

un+1
k+1 = diag(un+1

k )DNd
un+1
k + Fn+1

Nd
(3.1)
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where DNd
denotes the differentiation matrix,

An+1
Nd,k

= −ν (DNd
)2 +

2

Δt
INd

+ diag(un+1
k )DNd

+ diag
(
DNd

un+1
k

)
and

Fn+1
Nd

=
(
ν (DNd

)2 +
2

Δt
INd

)
un − diag(un)DNd

un + fn+1 + fn.

Suppose that we have Ns snapshots x1,x2, · · · ,xNs ∈ RNd , in which the snapshots can be

found by equation (3.1) with an appropriate time space Δt. Using the SVD algorithm produces

a diagonal matrix Σ and unitary matrices V and U satisfying

X = [x1 x2 · · · xNs ] = V ΣUT

so that we can take a POD-basis matrix, Vp = [v1 v2 · · · vp], of order p (p ≤ rank(Σ)).

Replacing the approximate solution un+1
k+1 in equation (3.1) by Vpw

n+1
k+1 with wn+1

k+1 ∈ Rp,

we are led to POD-basis method of order p: find wn+1
k+1 ∈ Rp satisfying

An+1
p,k wn+1

k+1 = V T
p diag(Vpw

n+1
k ) D̃pw

n+1
k + Fn+1

p (3.2)

where An+1
p,k ∈ Rp×p and Fn+1

p ∈ Rp are given by

An+1
p,k = −ν D̃pp +

2

Δt
Ip + V T

p diag(Vpw
n+1
k ) D̃p + V T

p diag
(
D̃pw

n+1
k

)
Vp

and

Fn+1
p =

(
ν D̃pp +

2

Δt
Ip

)
wn − V T

p diag(Vpw
n) D̃pw

n + V T
p

(
fn+1 + fn

)
with D̃p = DNd

Vp and D̃pp = V T
p D2

Nd
Vp.

In short, the algorithm of POD-basis method of order p can be described as follows.

[ Algorithm for POD-basis method of order p ]
Initialize

Nt the number of time step and K the number of Newton iterations

Set w0 = V T u0, Δt = T/Nt

D̃p = DNd
Vp, D̃pp = V T

p D2
Nd

Vp, A0 = −ν D̃pp + 2/Δt

For each time step n = 0, 1, 2, · · · , Nt

Set F0 =
(−A0 + 4/Δt

)
wn − V T

p diag(Vpw
n) D̃pw

n + V T
p

(
fn+1 + fn

)
wn+1

0 = wn

For each Newton iteration k = 0, 1, 2, · · · ,K − 1

Set B0 = V T
p diag(Vpw

n+1
k ) D̃p

Ap = A0 +B0 + V T
p diag

(
D̃pw

n+1
k

)
Vp

Fp = F0 +B0w
n+1
k

Find

wn+1
k+1 satisfying Apw

n+1
k+1 = Fp



REDUCED ORDER MODELING FOR BURGERS’ EQUATION WITH PSEUDO-SPECTRAL METHOD 129

End

Set

wn+1 = wn+1
K

un+1 = Vpw
n+1

End

4. NUMERICAL EXPERIMENTS

In this section, we present numerical results of pseudo-spectral element collocation method

with comparison between exact solutions and the reduced order approximate solutions. In our

numerical experiments, we divide the spatial domain Ω = (0, 1) into two sub-domains (0, 12)

and (12 , 1) and use polynomials of degree N = 17 for each sub-domain to apply pseudo-

spectral element collocation method. Then the system size of the pseudo-spectral element

collocation method is Nd = 36. To show the accuracy, we provide the numerical discrete

relative L2-error between the exact solution u(t) and full-basis approximation uN (t) or POD-

basis approximation up(t):

E(u, up) =

√∑Nt
n=0 ‖u(tn)− up(tn)‖2N Δt√∑Nt

n=0 ‖u(tn)‖2N Δt

where ‖ · ‖N denotes the spectral discrete norm with LGL nodes.

Example 1. We consider a Burgers equation (1.1) with zero force term f(t, x) = 0 and initial

condition given by:

u0(x) =

⎧⎨⎩1 in
(
0,

1

2

]
,

0 otherwise.

By Hopf-Cole transformation([11], [13]) the exact solution is given

u(t, x) = 2πν

∞∑
n=1

nAn exp(−νn2π2t) sin(nπx)

A0 +
∞∑
n=1

An exp(−νn2π2t) cos(nπx)

where

A0 = −2ν exp

(
− 1

4ν

)
+ 2ν +

1

2
exp

(
− 1

4ν

)
,

An = − 4ν

1 + 4ν2n2π2

(
exp

(
− 1

4ν

)
cos
(nπ

2

)
− 1− 2νnπ exp

(
− 1

4ν

)
sin
(nπ

2

))
+ exp

(
− 1

4ν

)(
2

nπ
sin(nπ)− 2

nπ
sin
(nπ

2

))
.
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We set ν = 1 and T = 0.2, and take the time-step size Δt = 1/3000. In this example, we take

POD-basis of order p = 15 using all approximate solutions for each time step. In Figure 1, one

may see that the error between the exact solution and POD-basis approximate solution is very

near to the error between the exact solution and full-basis approximate solution. Also the error

between full-basis approximate solution and POD-basis approximate solution is very small.
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FIGURE 1. Exact, approximate and POD solutions(top), and their errors(bottom).

Example 2. Now, let us address to a forced-Burgers equation (1.1) with following exact solu-

tion:

u(t, x) = exp(−ct2) sin(πx),
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TABLE 1. E(u, uN ) for various Δt and ν with T = 1 and N = 17.

ν = 1 ν = 0.5 ν = 0.00001 ν = 0.0000001

Δt = T/Nt E(u, uN ) E(u, uN ) E(u, uN ) E(u, uN )

0.02 1.20e− 005 2.13e− 005 7.09e− 005 7.09e− 005

0.01 3.00e− 006 5.37e− 006 1.79e− 005 1.79e− 005

0.005 7.53e− 007 1.35e− 006 4.51e− 006 4.51e− 006

0.0025 1.89e− 007 3.37e− 007 1.13e− 006 1.13e− 006

0.0013 4.72e− 008 8.43e− 008 2.83e− 007 2.83e− 007

where c is a constant. The forcing term is given by

f(t, x) = −2ct exp(−ct2) sin(πx)+π2ν exp(−ct2) sin(πx)+π{exp(−ct2)}2 sin(πx) cos(πx).
We set c = 1. The Newton iteration algorithm with Crank-Nicolson scheme given in section

2 is used to approximate the nonlinear problem for a wide range of viscosity ν. In Table 1, we

provide the errors between the exact solutions and the full-basis approximations with various

Δt and ν for T = 1 and N = 17.

Now, we are going to approximate the POD-basis solutions. The ROM solution up(tk) of

each time step tk = kΔt (k = 1, 2, · · · , Nt) with Δt = T/Nt is computed as follows. First

we take Ns-snapshots of full-based solutions with time step Δts = T/Ns. Then we compute

p-POD basis matrix Vp of order p from Ns-snapshots and compute Nt POD-basis solutions

using the p-POD basis. The smaller the number Ns is, the smaller the total cost of computing

POD-basis solutions is.

In Figure 2, the full ranks of snapshot matrix are increasing as the viscosities are decreasing.

However the ranks seem to be bounded as the number of snapshots Ns. It means that it is

sufficient to take at most Ns = 20 or 30.

If we assume that the snapshot matrix has rank m (p ≤ m) and nonzero singular values σj
(j = 1, 2, · · ·m), then the total error between POD-basis solutions and snapshot solutions is

given by

ε2(p) =

Ns∑
i=1

‖uNs(ti)− up(ti)‖2 =
m∑

j=p+1

σ2
j .

One may easily take an efficient POD-basis of order p considering the size of singular values

for the snapshot matrix. In Table 2, the most dominant component of the POD-basis is the first

one and an efficient order p of POD-basis can be 2 or 3.

In Table 3-5, we provide numerical experiments for the number of snapshots, Ns = 5. with

two different viscosities ν = 1, 0.0001. Considering the size of singular values given in Table

3, we take p = 2, the order of POD-basis, for the viscosity ν = 1 and p = 3 for ν = 0.0001.

The relative errors E(u, uN ) and E(u, up) and CPU-time to compute each solution for various
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FIGURE 2. The full rank of the snapshot matrix with T = 1, N = 17 for

Example 2.

TABLE 2. Singular values for various Ns with ν = 1, T = 1, N = 17.

Ns = 5 Ns = 10 Ns = 15 Ns = 20

σ1 7.85e+ 000 1.07e+ 001 1.30e+ 001 1.49e+ 001

σ2 2.64e− 004 8.57e− 005 4.53e− 005 2.90e− 005

σ3 2.42e− 006 9.46e− 007 5.25e− 007 3.44e− 007

σ4 1.18e− 008 4.90e− 009 2.77e− 009 1.83e− 009

σ5 1.96e− 011 2.16e− 011 1.32e− 011 9.02e− 012

σ6 2.60e− 013 1.73e− 013 3.47e− 013

σ7 8.80e− 014 7.34e− 014

time steps are provided in Table 4 for ν = 1 and in Table 5 for ν = 0.0001. These experiments

show that using POD-basis method is very efficient in the point of computing cost.

In Table 6-8, we also provide numerical experiments for the number of snapshots, Ns = 15,

similarly. From the size of singular values given in Table 6, we also take p = 2 for the viscosity

ν = 1 and p = 3 for ν = 0.0001. The numerical results given in Table 7-8 are similar to those

for the case Ns = 5. But, increasing the number of snapshots Ns from 5 to 15, we had a little

bit improved numerical results in the point of accuracy.
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TABLE 3. Singular values σj , j = 1, 2, · · · , for Ns = 5, T = 1, N = 17.

ν�σj σ1 σ2 σ3 σ4 σ5

1 7.85e+ 00 2.64e− 04 2.42e− 06 1.18e− 08 1.96e− 011

0.0001 7.86e+ 00 1.85e− 02 1.17e− 03 7.34e− 05 2.45e− 006

TABLE 4. Relative errors for ν = 1, T = 1, N = 17, Ns = 5, p = 2.

Δt = T/Nt [u(t)− uN (t)] [u(t)− up(t)]

E(u, uN ) CPU time E(u, up) CPU time

0.02 1.20e− 005 1.68(s) 1.22e− 005 0.41(s)

0.01 3.01e− 006 3.01(s) 3.25e− 006 0.50(s)

0.005 7.54e− 007 5.71(s) 1.00e− 006 0.39(s)

0.0025 1.89e− 007 11.31(s) 4.59e− 007 0.64(s)

0.00125 4.72e− 008 22.51(s) 3.32e− 007 0.95(s)

TABLE 5. Relative errors for ν = 0.0001, T = 1, N = 17, Ns = 5, p = 3.

Δt = T/Nt [u(t)− uN (t)] [u(t)− up(t)]

E(u, uN ) CPU time E(u, up) CPU time

0.02 7.31e− 005 2.17(s) 6.22e− 005 0.36(s)

0.01 1.82e− 005 4.35(s) 1.54e− 005 0.58(s)

0.005 4.54e− 006 8.27(s) 1.64e− 005 0.44(s)

0.0025 1.13e− 006 16.58(s) 1.84e− 005 0.86(s)

0.00125 2.84e− 007 33.70(s) 1.90e− 005 0.78(s)

TABLE 6. Singular values σj , j = 1, 2, · · · , for Ns = 15, T = 1, N = 17.

ν�σj σ1 σ2 σ3 σ4 σ5

1 1.30e+ 01 4.53e− 05 5.25e− 07 2.77e− 09 1.32e− 011

0.0001 1.30e+ 01 4.31e− 03 3.75e− 04 4.67e− 05 7.49e− 006
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