DOI QR코드

DOI QR Code

Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows

공간차분도식이 점탄성 유체유동의 수치해에 미치는 영향

  • Published : 2000.09.01

Abstract

This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

Keywords

References

  1. Caswell, B., 1996, 'Report on the IXth International Workshop on Numerical Methods in Non-Newtonian Flows,' J. Non-Newtonian Fluid Mech., Vol. 62, pp. 99-110 https://doi.org/10.1016/0377-0257(95)01402-0
  2. Mompean, G. and Deville, M., 1997, 'Unsteady Finite Volume Simulation of Oldroyd-B Fluid Through a Three - Dimensional Planar Contraction,' J. Non-Newtonian Fluid Mech., Vol. 72, pp. 253-279 https://doi.org/10.1016/S0377-0257(97)00033-5
  3. Xue, S. -C., Phan- Thien, N. and Tanner, R. I., 1998, 'Three Dimensional Numerical Simulations of Viscoelastic Flows Through Planar Contraction,' J. Non-Newtonian Fluid Mech., Vol. 74, pp. 195-245 https://doi.org/10.1016/S0377-0257(97)00072-4
  4. Barnes, H. A., Hutton, J, F. and Walters, K., 1989, An Introduction to Rheology, Rheology Series Vol. 3, Elsevier Science Publishers, New York
  5. Schowalter, W. R., 1978, Mechanics of Non-Newtonian Fluids, Pergamon, Oxford
  6. Renardy, M, 1995, 'On the Mechanism of Drag Reduction,' J. Non-Newtonian Fluid Mech., Vol. 59, pp. 93-101 https://doi.org/10.1016/0377-0257(95)01357-2
  7. Gyr, A. and Tsinober, A., 1997 'On the Rheological Nature of Drag Reduction Phenomena,' J. Non-Newtonian Fluid Mech., Vol. 73, pp. 153-162 https://doi.org/10.1016/S0377-0257(97)00055-4
  8. Crochet, M. J., Davies, A. R. and Walters, K., 1984, Numerical Simulation of Non-Newtonian Flow, Rheology Series Vol. I, Elsevier Science Publishers, New York
  9. Joseph, D. D., 1990, Dynamics of Viscoelastic Liquids, Springer-Verlag, New York
  10. Dupret F. and Marchal, J. M., 1986, 'Loss of Evolution in the Flow of Viscoelastic Fluids,' J Non-Newtonian Fluid Mech., Vol. 20, pp. 143-171 https://doi.org/10.1016/0377-0257(86)80019-2
  11. Azaiez J. and Homsy, G. M., 1994, 'Numerical Simulation of Non-Newtonian Free Shear Flows at High Reynolds Numbers,' J. Non-Newtonian Fluid Mech., Vol. 52, pp. 333-374 https://doi.org/10.1016/0377-0257(94)85029-1
  12. Beris, A. N. and Sureshkumar, R., 1995, 'Simulation of Time-Dependent Viscoelastic Channel Flow at High Reynolds Numbers,' Chemical Eng. Sci., Vol. 51, pp. 1451-1471 https://doi.org/10.1016/0009-2509(95)00313-4
  13. Sureshkumar, R. and Beris, A. N., 1995, 'Effect of Artificial Stress Diffusivity on the Stability of Numerical Calculations and the Flow Dynamics of Time-Dependent Viscoelastic Flows,' J. Non-Newtonian Fluid Mech., Vol. 60, pp. 53-80 https://doi.org/10.1016/0377-0257(95)01377-8
  14. Marchal, J. M. and Crochet, M. J., 1987, 'A New Mixed Finite Element Method for Calculating Viscoelastic Flow,' J Non-Newtonian Fluid Mech., Vol. 26, pp. 77-114 https://doi.org/10.1016/0377-0257(87)85048-6
  15. King, R. K., Apelian, M. R., Armstrong, R. C. and Brown, R. A., 1988, 'Numerically Stable Finite Element Methods for Solution of Steady Viscoelastic Flows,' J. Non-Newtonian Fluid Mech., Vol. 29, pp, 147-216 https://doi.org/10.1016/0377-0257(88)85054-7
  16. Rajagopalan, D., Armstrong, R. C. and Brown, R. A., 1990, 'Finite Element Methods for Calculation of Steady Viscoelastic Flow Using Constitutive Equations with a Newtonian Viscosity,' J. Non-Newtonian Fluid Mech., Vol. 36, pp. 159-192 https://doi.org/10.1016/0377-0257(90)85008-M
  17. Yoo, J. Y. and Na, Y., 1991, 'A Numerical Study of Planar Contraction Flow of Viscoelastic Fluid Using the SIMPLER Algorithm,' J. Non-Newtonian Fluid Mech., Vol. 39, pp. 89-106 https://doi.org/10.1016/0377-0257(91)80005-5
  18. Kim, J., Moin, P. and Moser, R., 1987, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166 https://doi.org/10.1017/S0022112087000892
  19. Orlandi, P., 1995, 'A Tentative Approach to the Direct Simulation of Drag Reduction by Polymers,' J. Non-Newtonian Fluid Mech., Vol. 60, pp. 277-301 https://doi.org/10.1016/0377-0257(95)01388-7
  20. Den Toonder, J. M., Hulsen, M. A., Kuiken, G. D. C. and Nieuwstadt, F. T. M., 1997, 'Drag Reduction by Polymer Additives in a Turbulent Pipe Flow,' J. Fluid Mech., Vol. 337, pp. 193-231 https://doi.org/10.1017/S0022112097004850
  21. Sureshkumar, R., Beris, A. N. and Handler, R. A., 1997, 'Direct Numerical Simulation of Turbulent Channel Flow of a Polymer Solution,' Phys. Fluids, Vol. 9, pp. 743-755 https://doi.org/10.1063/1.869229
  22. Dimitropoulos, C. D. Sureshkumar, R. and Beris, A. N., 1998, 'Direct Numerical Simulation of Viscoelastic Turbulent Channel Flow Exhibiting Drag Reduction: Effect of the Variation of Rheological Parameters,' J. Non-Newtonian Fluid Mech., Vol. 79, pp. 433-468 https://doi.org/10.1016/S0377-0257(98)00115-3
  23. De Angelis, E., Casciola, C. M. and Piva, R., 1999, 'Wall Turbulence in Dilute Polymer Solutions,' Proceedings of 8th International Symposium on Computational Fluid Dynamics, p. 75
  24. Pilitsis, S. and Beris, A. N., 1989, 'Calculations of Steady State Viscoelastic Flow in an Undulating Tube,' J. Non-Newtonian Fluid Mech., Vol. 31, pp. 231-287 https://doi.org/10.1016/0377-0257(89)85001-3
  25. Missirlis, K. A., Assimacopoulos, D. and Mitsoulis, E., 1998, 'A Finite Volume Approach in the Simulation of Viscoelastic Expansiona Flows,' J. Non-Newtonian Fluid Mech., Vol. 78, pp. 91-118 https://doi.org/10.1016/S0377-0257(98)00057-3
  26. Oliveira, P. J., Pinho, F. T. and Pinto, G. A., 1998, 'Numerical Simulation of Nonlinear Elastic Flows with a General Collocated Finite Volume Method,' J. Non-Newtonian Fluid Mech., Vol. 79, pp. 1-43 https://doi.org/10.1016/S0377-0257(98)00082-2
  27. Singh, P and Leal, L. G., 1993, 'Finite Element Simulation of the Start-up Problem for a Viscoelastic Fluid in an Eccentric Rotating Cylinder Geometry Using a Third-order Upwind Scheme,' Theor. Comput. Fluid. Dyn., Vol. 5, pp. 107-137 https://doi.org/10.1007/BF00311813
  28. Bird, R. B., Curtiss, C. F., Armstrong, R. C. and Hassager, O., 1987, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, John Wiley & Sons, New York
  29. Lele, S. K., 1992, 'Compact Finite Difference Schemes with Spectral-like Resolution,' J. Comput. Phys., Vol. 103, 16-42 https://doi.org/10.1016/0021-9991(92)90324-R
  30. Tolstykh, A. I. and Lipavskii, M. V., 1998, 'On Performance of Methods with Third- and Fifth-order Compact Upwind Differencing,' J. Comput. Phys., Vol. 140, 205-232 https://doi.org/10.1006/jcph.1998.5887
  31. Ferziger, J. H. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, New York
  32. Yee, H. C., Sandham, N. D. and Djomehri, M. J., 1999, 'Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic - Based Filters,' J. Comput. Phys., Vol. 150, pp. 199-238 https://doi.org/10.1006/jcph.1998.6177
  33. Choi, H., Moin, P. and Kim, J., 1994, 'Active Turbulent Control for Drag Reduction in Wall-Bounded Flows,' J. Fluid Mech., Vol. 262, pp. 75-110 https://doi.org/10.1017/S0022112094000431
  34. Luchik, T. S. and Tiedermann, W. G., 1988, 'Turbulent Structure in Low-Concentration Drag-Reducing Channel Flows,' J. Fluid Mech., Vol. 190, pp. 241-263 https://doi.org/10.1017/S0022112088001302