• Title/Summary/Keyword: numerical comparison problems

Search Result 221, Processing Time 0.029 seconds

Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam

  • Liu, Zhifeng;Yin, Yunyao;Wang, Feng;Zhao, Yongsheng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.697-709
    • /
    • 2013
  • A simulation method called modified differential transform is studied to solve the free vibration problems of uniform Euler-Bernoulli beam. First of all, the modified differential transform method is derived. Secondly, the modified differential transformation is applied to uniform Euler-Bernoulli beam free-free vibration. And then a set of differential equations are established. Through algebraic operations on these equations, we can get any natural frequency and normalized mode shape. Thirdly, the FEM is applied to obtain the numerical solutions. Finally, mode experimental method (MEM) is conducted to obtain experimental data for analysis by signal processing with LMS Test.lab Vibration testing and analysis system. Experimental data and simulation results are illustrated to be in comparison with the analytical solutions. The results show that the modified differential transform method can achieve good results in predicting the solution of such problems.

Application of p-Version Crack Model Based on J-integral Method in LEFM Analysis (선형탄성 파괴역학해석에서 J-적분법에 의한 p-Version 균열모델의 적용)

  • 이채규;우광성;김영인
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.137-148
    • /
    • 1995
  • A new path independent contour integral formulus for the distinct calculation of mode I stress intensity factors in two dimensional linear elastic fracture mechanics problems is presented. This method is based on p-convergence concepts and can be easily appended to existing finite element computer codes. In this study, the stress state at crack tip has been investigated and the path independence of J-integral values has been tested with respect to different contours expressed by normalized distance apart from the crack tip. Numerical results by p-convergence for the problems such as centrally cracked panels, single and double edged cracks in rectangular panels have been compared with those by the conventional h-convergence. The comparison demonstrates the accuracy and stability of the proposed method.

  • PDF

A Study on Characteristics of Driving Control of Crane (크레인의 구동제어 특성에 관한 연구)

  • 이형우;박찬훈;김두형;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.545-550
    • /
    • 2001
  • This paper studied on the lateral motion and yaw motion of the gantry crane that is used for the automated container terminal. Though several problems are occurred in driving of the gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operator. There are two types, cone and flat type in driving wheel shape. In cone type, the lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of two driving wheels are derived. Then, we investigate the driving characteristics of gantry crane. In this study, the proposed controller, based on Model Based Controller, is used to control the lateral displacement and yaw angle of the gantry crane. And the availability of the proposed controller is showed through the comparison with the result of the proposed controller and PD controller. The simulation results of the driving mechanism, using the Runge-Kutta Method that is one of the numerical analysis methods, are presented in this paper.

  • PDF

A Study on the Improvement of the Accuracy for the Least-Squares Method Using Orthogonal Function (직교함수를 이용한 최소자승법의 정밀도 향상에 관한 연구)

  • Cho, Won Cheol;Lee, Jae Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1986
  • With increasing of computer use, a least squares method is now widely used in the regression analysis of various data. Unreliable results of regression coefficients due to the floating point of computer and problems of ordinary least squares method are described in detail. To improve these problems, a least squares method using orthogonal function is developed. Also, Comparison and analysis are performed through an example of numerical test, and re-orthogonalization method is used to increase the accuracy. As an example of application, the optimum order of AR process for the time series of monthly flow at the Pyungchang station is determined using Akaike's FPE(Final Prediction Error) which decides optimum degree of AR process. The result shows the AR(2) process is optimum to the series at the station.

  • PDF

A Finite Element Analysis of Non-Isothermal Sheet Metal Forming Process (비등온 박판 성형공정의 유한요소해석)

  • ;Wagoner, R. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1119-1128
    • /
    • 1990
  • A numerical method for analyzing non-isothermal, rigid-viscoplastic deformation problems has been presented. As an application, a stretch forming of sheet metals, including temperature effect, has been analyzed by a three-dimensional finite element method. Bishop`s step-wise decoupled method is adopted to solve thermomechanical coupling between deformation and heat transfer. Using the method, the effect of temperature on strain distribution during stretch forming is investigated. By comparison of the non-isothermal results with isothermal analysis, the importance of including temperature effects in the analysis of metal forming problems is emphasized. The predicted results were in good agreement with the existing experimental measurements at the different punch temperatures and dome heights investigated. It is also found that any increase of the punch temperature appeared to postpone the strain localization process by lowering the peak strain in the critical punch-sheet contact region and by normalizing strain distribution within the specimen.

Singular Cell Integral of Green's tensor in Integral Equation EM Modeling (적분방정식 전자탐사 모델링에서 Green 텐서의 특이 적분)

  • Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • We describe the concept of the singularity in the integral equation of electromagnetic (EM) modeling in comparison with that in the integral representation of electric fields in EM theory, which would clarify the singular integral problems of the Green's tensor. We have also derived and classified the singular integrals of the Green's tensors in 3-D, 2.5-D and 2-D as well as in the thin sheet integral equations of the EM scattering problem, which have the most important effect on the accuracy of the numerical solution of the problems.

  • PDF

Estimation of the Number of Sources Based on Hypothesis Testing

  • Xiao, Manlin;Wei, Ping;Tai, Heng-Ming
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.481-486
    • /
    • 2012
  • Accurate and efficient estimation of the number of sources is critical for providing the parameter of targets in problems of array signal processing and blind source separation among other such problems. When conventional estimators work in unfavorable scenarios, e.g., at low signal-to-noise ratio (SNR), with a small number of snapshots, or for sources with a different strength, it is challenging to maintain good performance. In this paper, the detection limit of the minimum description length (MDL) estimator and the signal strength required for reliable detection are first discussed. Though a comparison, we analyze the reason that performances of classical estimators deteriorate completely in unfavorable scenarios. After discussing the limiting distribution of eigenvalues of the sample covariance matrix, we propose a new approach for estimating the number of sources which is based on a sequential hypothesis test. The new estimator performs better in unfavorable scenarios and is consistent in the traditional asymptotic sense. Finally, numerical evaluations indicate that the proposed estimator performs well when compared with other traditional estimators at low SNR and in the finite sample size case, especially when weak signals are superimposed on the strong signals.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

ALTERNATED INERTIAL RELAXED TSENG METHOD FOR SOLVING FIXED POINT AND QUASI-MONOTONE VARIATIONAL INEQUALITY PROBLEMS

  • A. E. Ofem;A. A. Mebawondu;C. Agbonkhese;G. C. Ugwunnadi;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.131-164
    • /
    • 2024
  • In this research, we study a modified relaxed Tseng method with a single projection approach for solving common solution to a fixed point problem involving finite family of τ-demimetric operators and a quasi-monotone variational inequalities in real Hilbert spaces with alternating inertial extrapolation steps and adaptive non-monotonic step sizes. Under some appropriate conditions that are imposed on the parameters, the weak and linear convergence results of the proposed iterative scheme are established. Furthermore, we present some numerical examples and application of our proposed methods in comparison with other existing iterative methods. In order to show the practical applicability of our method to real word problems, we show that our algorithm has better restoration efficiency than many well known methods in image restoration problem. Our proposed iterative method generalizes and extends many existing methods in the literature.

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.