• Title/Summary/Keyword: numerical algorithm

Search Result 4,125, Processing Time 0.028 seconds

ACCELERATED HYBRID ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Baiya, Suparat;Ungchittrakool, Kasamsuk
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.553-568
    • /
    • 2022
  • In this paper, we introduce and study two different iterative hybrid projection algorithms for solving a fixed point problem of nonexpansive mappings. The first algorithm is generated by the combination of the inertial method and the hybrid projection method. On the other hand, the second algorithm is constructed by the convex combination of three updated vectors and the hybrid projection method. The strong convergence of the two proposed algorithms are proved under very mild assumptions on the scalar control. For illustrating the advantages of these two newly invented algorithms, we created some numerical results to compare various numerical performances of our algorithms with the algorithm proposed by Dong and Lu [11].

Algorithm for the Constrained Chebyshev Estimation in Linear Regression

  • Kim, Bu-yong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • This article is concerned with the algorithm for the Chebyshev estimation with/without linear equality and/or inequality constraints. The algorithm employs a linear scaling transformation scheme to reduce the computational burden which is induced when the data set is quite large. The convergence of the proposed algorithm is proved. And the updating and orthogonal decomposition techniques are considered to improve the computational efficiency and numerical stability.

  • PDF

The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm (적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선)

  • Hyun Nam;Suk-Jin Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.

Improved efficiency of numerical modeling using the expanding domain method with a logarithmic grid (영역확장법 및 로그격자를 이용한 수치모델링 효율 향상 연구)

  • Hong, Bo-Ram;Bae, Ho-Seuk;Ha, Wan-Soo;Chung, Woo-Keen
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • Numerical modeling based on the finite difference method has been widely used with improved computer technology. However, high-capacity computing resources are required for this technique. To overcome this limitation, we propose an algorithm the employs a logarithmic grid in conjunction with the expanding domain method. The proposed algorithm was verified through comparison with numerical results obtained with a conventional method. The results confirmed that our algorithm can improve computational efficiency.

Development of Numerical Algorithm of Total Point Method for Thinning Evaluation of Nuclear Secondary Pipes (원전 2차측 배관 감육여부 판별을 위한 Total Point Method 전산 알고리즘 개발)

  • Oh, Young Jin;Yun, Hun;Moon, Seung Jae;Han, Kyunghee;Park, Byeong Uk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • Pipe wall-thinning by flow-accelerated corrosion (FAC) and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall-thinning that includes periodic measurements for pipe wall thicknesses using ultrasonic tests (UTs). Nevertheless, thinning evaluations are not easy because the amount of thickness reduction being measured is often quite small compared to the accuracy of the inspection technique. U.S. Electric Power Research Institute (EPRI) had proposed Total Point Method (TPM) as a thinning occurrence evaluation method, which is a very useful method for detecting locally thinned pipes or fittings. However, evaluation engineers have to discern manually the measurement data because there are no numerical algorithm for TPM. In this study, numerical algorithms were developed based on non-parametric and parametric statistical method.

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

Efficient gravitational search algorithm for optimum design of retaining walls

  • Khajehzadeh, Mohammad;Taha, Mohd Raihan;Eslami, Mahdiyeh
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • In this paper, a new version of gravitational search algorithm based on opposition-based learning (OBGSA) is introduced and applied for optimum design of reinforced concrete retaining walls. The new algorithm employs the opposition-based learning concept to generate initial population and updating agents' position during the optimization process. This algorithm is applied to minimize three objective functions include weight, cost and $CO_2$ emissions of retaining structure subjected to geotechnical and structural requirements. The optimization problem involves five geometric variables and three variables for reinforcement setups. The performance comparison of the new OBGSA and classical GSA algorithms on a suite of five well-known benchmark functions illustrate a faster convergence speed and better search ability of OBGSA for numerical optimization. In addition, the reliability and efficiency of the proposed algorithm for optimization of retaining structures are investigated by considering two design examples of retaining walls. The numerical experiments demonstrate that the new algorithm has high viability, accuracy and stability and significantly outperforms the original algorithm and some other methods in the literature.

COMPARATIVE STUDY OF NUMERICAL ALGORITHMS FOR THE ARITHMETIC ASIAN OPTION

  • WANG, JIAN;BAN, JUNGYUP;LEE, SEONGJIN;YOO, CHANGWOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.75-89
    • /
    • 2018
  • This paper presents the numerical valuation of the arithmetic Asian option by using the operator-splitting method (OSM). Since there is no closed-form solution for the arithmetic Asian option, finding a good numerical algorithm to value the arithmetic Asian option is important. In this paper, we focus on a two-dimensional PDE. The OSM is famous for dealing with plural-dimensional PDE using finite difference discretization. We provide a detailed numerical algorithm and compare results with MCS method to show the performance of the method.

A FAST AND ACCURATE NUMERICAL METHOD FOR MEDICAL IMAGE SEGMENTATION

  • Li, Yibao;Kim, Jun-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.201-210
    • /
    • 2010
  • We propose a new robust and accurate method for the numerical solution of medical image segmentation. The modified Allen-Cahn equation is used to model the boundaries of the image regions. Its numerical algorithm is based on operator splitting techniques. In the first step of the splitting scheme, we implicitly solve the heat equation with the variable diffusive coefficient and a source term. Then, in the second step, using a closed-form solution for the nonlinear equation, we get an analytic solution. We overcome the time step constraint associated with most numerical implementations of geometric active contours. We demonstrate performance of the proposed image segmentation algorithm on several artificial as well as real image examples.