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ABSTRACT. This paper presents the numerical valuation of the arititnfesian option by
using the operator-splitting method (OSM). Since thereislosed-form solution for the arith-
metic Asian option, finding a good numerical algorithm toueathe arithmetic Asian option is
important. In this paper, we focus on a two-dimensional PDiie OSM is famous for deal-
ing with plural-dimensional PDE using finite differenceatistization. We provide a detailed
numerical algorithm and compare results with MCS methochtmsthe performance of the
method.

1. INTRODUCTION

We consider an efficient and accurate finite difference miefihpand Monte Carlo simula-
tion [2] for an arithmetic Asian option. The Asian option is@ntract that gives the holder the
right to buy an asset based on its average price over som&ipess period of time [3]. There
are two types of Asian options such as arithmetic Asian aptiod geometric Asian option.
Geometric Asian option with payoff which depends on geoimeatrean of underlying asset
over time interval has a closed form solution. On the othedharithmetic Asian option with
payoff which depends on arithmetic mean of underlying asget time interval does not have
a closed form solution. Thus, finding a good numerical atbarito value arithmetic Asian
option is important.

A lot of previous studies for the Asian option have been imm@ated. There are a number of
studies to approximate this option [4, 5, 6, 7]. Howeversthapproximation formula are only
suitable for a simple type of Asian option, i.e., Europegretgf Asian option. In general, the
value of derivative can be found by solving PDE [8]. Therefas@representative forms of PDE
for Asian option. Two of them have two spatial dimensions Hrey are derived by Ingersoll

Received by the editors February 28 2018; Accepted MarctD18;2Published online March 16 2018.

2000Mathematics Subject Classificatio83B05.

Key words and phrasesArithmetic Asian option, operator splitting method, findd#ference method, Black—
Scholes equation.

 Corresponding author.

75



76 J. WANG, J. BAN, S. LEE, AND C. YOO

in [9] and Duffy in [1]. They are derived by using same hedgangument underlying Black—
Scholes in [10]. In this paper, we are going to deal with PDEvdd by Ingersoll. Rest of
them have one spatial dimension which is derived by changermiraire technique. Ingersoll
setR = S/I and Duffy setR = I/S whereS is stock process anfi= [ Sdt. And they work
some stochastic calculus to derived deterministic PDE j®[1L1]. Turning upside down of
numerator and denominator and some work of stochasticloalcan make PDE more simpler.
However, these PDEs are only available for floating strikgetpf Asian option. In 1995,
Rogers and Shi [12] derived one spatial dimensional PDE lisi@available for both floating
strike type and fixed strike type of Asian options by setting= [K — fot S(T)u(dr)]/S;.
Floating and fixed strikes are as followsi(7') — K)*, (K — A(T))*, (S(T) — A(T))™", and
(A(T) — S(T))™, respectively, for fixed strike call, fixed strike put, floatistrike call, and
floating strike put, where\(T") = I(T)/T.

Reduction of spatial dimension for Asian option makes PDEetsimpler. Also, when we
solve Asian option numerically, it reduces computatioradtand increases accuracy of the
numerical solution. However, it may not always be possiblend a similarity solution [1] and
derived one spatial dimensional PDEs are not suitable foidbdype of Asian option and local
volatility model [13]. Also, combining other propertiesather exotic option with Asian option
will make problems more complicated. It is hard to find bougdanditions since one spatial
dimensional PDE is not intuitive than two spatial dimenaldADE. Thus, there is necessity of
good numerical algorithm to solve two spatial dimensior2ERN recent complicated financial
market situation. We are going to adapt OSM and method ofacheristic for one of spatial
dimension which has no diffusion term to solve two spatiahelsional PDE. This concept
was introduced by Duffy in [1] but was not described in detdib show performance of the
proposed algorithm, we will compare with MCS method.

Section 2 presents arithmetic Asian option and PDE deriyebhgersoll in [9]. Section 3
describes numerical solution algorithm using finite défeze scheme and OSM with method
of characteristic and presents a numerical algorithm toeparithmetic Asian option by using
MCS method. Section 4 presents the computational resutigisg the performances of the
MCS method and FDM using OSM, that is, comparative study.cl@ions are presented in
Section 5.

2. ARITHMETIC ASIAN OPTION PDEBY INGERSOLL

We adapt the classical Geometric Brownian Motion (GBM) foick processS(¢) :
dS(t) = rS(t)dt + oS(t)dW (t) (2.1)

where r is risk-neutral constant interest rateis constant volatility andiV(¢) is standard
Brownian Motion.V (T, S(T'), I(T)) denote payoff function of Asian option where

1) = /0 " 5(0)a6.
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By definition, dynamics of variable | is
dI(t) = S(t)dt

which will be used for I6’s lemma. There must exist some functioft, S(¢), I(¢)) such that

w(t, S(t), I(t)) E[%V(T,S(T),I(T))].F(t)}

~E [e—’"<T—t>V(T, S(T),I(T))yf(t)] (2.2)

whereE represent risk-neutral expectation ahdt) denote discount factor. Since we as-
sumed constant interest rate, discount factab{g) = e~"*. Price functionv(t, S(t), I(t))
can represent any strike type of Asian option. By propertyisk-neutral pricing, process
D(t)v(t,S(t),I(t)) = e "to(t, S(t), I(t)) must be martingale. By applyingols lemma, dy-
namics ofD(t)v(t, S(t), I(t)) becomes

1
d(e "wv(t, S(t),I(t))) = e " {—mdt + vedt + vgdS + vrdl + §Ussd5d5]
1 —~
= e "t {—rv + v + rSvg + Svy + 502035} dt + e "o SvsdW (t)

whereuv, denote differential of v on x-direction andl (t) is risk-neutral Brownian motion. For
this process to be martingalé, term of this process must be zero. Thus, we derived Ingé&rsoll
2-spatial dimensional PDE as follows
1 2% %
ov L Lage 0 0 ov

a2 T3 552 —I-T‘S%—I—SW—TV:O. (2.3)

To demonstrate following numerical algorithms, we set (fidfgmction as fixed strike call
V(T,S(T), I(T))A(T) = (A(T) — K)*. (2.4)

Without loss of generality, other payoff function also canddlapted in those algorithms by
changing some boundary conditions and initial conditions.

3. NUMERICAL METHODS

In this section, we describe the numerical discretizatib&ep (2.3). We also present the
operator-splitting algorithm in detail. Particularly, \&ee going to use method of characteristic
for one of spatial dimension which does not have diffusiomte

3.1. Finitedifference discretization. Let £pg be the operator

5 50%v ov  Ov
+rs—+Ss——1v

1
Lps =507 gz T 55, ¥ 55



78 J. WANG, J. BAN, S. LEE, AND C. YOO

andr be the remaining time to maturity such that= 7" — ¢ whereT is maturity. Then, the
two spatial dimensional Ingersoll's equation can be réamits

v
or
Value of this derivative is defined on unbounded domain shet{{r, s,7) | 7 € [0,7], s >
0, i € R} as you can see in [14]. To compute price of option in computertruncate this
domain as finite computational domain such that, s,i) | 7 € [0,7], 0 < s < M, 0 <
i < M;}, whereM, and M; are large enough number. In generdl; and M; could be set
as two or three times of strike prid€. Then, error of the price driven by truncation becomes
ignorable [15]. Note that setting of domairis {i | 0 < i < M;}. Although the original
domain fori is {i | « € R}, we assumed thatis almost surely positive becausés defined as
= fot S(0)de and classically defined GBM stock procesg) is positive on any time. We
have Dirichlet boundary condition when= 0 such that

= Lpg, for (1,s,i) € [0,T] x £,

o(r.0,8) = (=

for 7 € [0,7] and0 < ¢ < M;. Also, for rest of three artificial boundaries, we have linea
boundary condition [16, 17, 18, 19] such that
0? 0? 0?
82(7'30) 82(TSM) 952
forr €[0,7],0 < s < Mgand0 <i < M;.

Let Ny, N; and N.- denote the numbers of grid points fer i- andr-directions, respectively.
We are going to adapt uniform grid as= M;/N, = M; = /N; and At = T/N, which
discretize the settled computational domg@il’] x © where(2 = (0, M) x (0, M;). Figure
1 illustrates the 2-dimensional uniform grid with a spasigp size h.

According to discretizatiom;bk denote approximated numerical solution such that

vy, = v(1", 85,4) = v(nAT, jh, kh)
forn=0,...,N,,j=1,...,Ng—landk =1,..., N;—1. For Dirichlet boundary condition
whens = 0, numerical approximation in each time steps defined as
kh
T
Since other directions are used linear boundary conditimhfarmula used linear boundary

condition do not depend on time step, for all time steps, migakapproximation can be de-
noted as

_ K)+

u(r, Ms,i) =0

vl = v(nAT,0,kh) = e AT ( — K)T.

vjo = 2051 — Vj2, UjN; = 20 N;—1 — Uj,N;—2
forj=1,--- ,Ny—1and
UNg k= 2UN,— 1k — UN,—2,k
fork=1,--- ,N; — 1.
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FIGURE 1. Schematic of uniform 2-dimensional grid with a spatiajpssize h.

3.2. Operator-splitting method. The concept of operator-splitting method is to transfer
problem of multi-dimensional PDE to problem of multiple edienensional problems [1, 20].
In this case, we are going to use method of characteristiedioection whose solution could be
represented as analytic solution by solving simple padiifrential equation. Simple partial
differential equation is

V, — SV; = 0. (3.1)
We can find analytic solution by some work with Eq.(3.1) suwdt t
V(S,I,7)=V(S,I(r—7"),m)forT > 1"
Verification of solution is as follows:
Since V, = SV'(S, I+ S(r — "), ") andV; = V'(S, I + S(t — "), "),
hence V, — SV; = SV/ — SV/ = 0.

Adapting our discretized scheme to this solution, solut@reach time step could be repre-
sented as

V(S,I,7"Y) =V(S,I+ SAr, ™). (3.2)

Also, because solution could be in between points that we Hieseretized, we are going to use
linear interpolation for computing this problem. In gengtiae basic operator-splitting scheme
for the spatial two-dimensional Ingersoll’s PDE as follows

n+1

Ujk’ _U;Lk _ £Z n+% £s n+1 3.3
AL RIGVie T T RIGY (3.3)
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where the operatof’ . and L3, defined by

n n
i oty Yk T Yk

Iijk: - h S5

92,mn+l o ntl n+1 n+l _ n+l
o gntt _ (089 Vimie = 2 Fenk  Vik Tk
GV = T 12 j h ik -

The first step is using analytic solution in the i-directidwext step is solving implicitly in
the s-direction. We set temporary time step % for compute OS-scheme which does not exist
in real. This OSM reduce 2-dimensional problem into two heinsional problem.

By Eq.(3.2), discrete solution is

O 0 — "
fuﬂj2 = WS]'AT + Vj- (3.4)

This implies discrete difference i-direction operatorngsmethod of characteristiﬁ}G is

defined by

v?,:% — g, o ptl

7 = Lrav * (3.5)
Also, implicitly approximating s-direction operatd; . is defined by

U;'Lljl — ;l:r% i ontl

BV (L (3.6)

Note that sum of two Egs.(3.5) and (3.6) is Eq.(3.3). Beftemie Algorithm’s logic we set
v, = A(T). An algorithm of the OSM is as follows:
Algorithm OS
e Step 1l
Initialize v7}, = e~"A7 (KL — K)* in every time step.
e Step 2

To describe as general form of OSM, Eqg. (3.5) is used. Howdwetompute i-
direction solution, Eq. (3.5) is rewritten as Eq.(3.4). Eachj, we have

ntel UR — 7
'Uj]:_2 = ‘77k+1h ]ijAT‘i"U;Lk (37)
The first step of the OS method is then implemented in a loop thess-direction:
for j=0:N;

for k=1:N;,—-1
1
Solvev?,:r2 by Eq. (3.7) (see Fig.2(a))
end
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Use boundary condition

n+2 9" TE _ n+3 +2_2 +1 n+2
jO - 251 ]2 ) yN ]N—l yN -2

end

1
Note thatuy > = v, for k = 0,..., N; becauses, = 0. Thus, Stef2 do nothing
for 0,0:N; -

O A\~ O O O N7 O """" O O
Vo
JNG
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@ < © © o——©0 *—O
Uok Ulk /U\hk
G © & ) © & @ © D
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v,
Jo
(a) Step 2 (b) Step 3

FIGURE 2. Two steps of the OSM.

e Step 3

Unlike in Step 1 Eq. (3.6) is rewritten as follows:

Qjv; 1k+/8J n+1+% ;Tik:fjm (3.8)
where
10232 1 0'235 7“3]
Y=y TRt T
2.2
10 S .
%= "5 —%, fork=1,..,N; —1
and
n+2
_ kh
Jik = XT —age T"AT(T - K)¥, (3.9)
n+2
fik = XT forj=2,...,N,—1. (3.10)

Note that we adapt Dirichlet boundary condition to get thefficients.
As with Step 2 Step 3s then operated in a loop over thelirection:
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for k=0:N;
for j=1:N,—1
Setf;;, by Eq. (3.10)
end
SoIveAsu’fjvls_Lk = fi1.n,-1,x Dy using Thomas algorithm (see Fig. 2(b))
end

Here A is tridiagonal matrix constructed from Eq. (3.8) with a Diriet boundary
condition forj = 0 and a linear boundary condition fgr= N

51 Y1 0 ... 0 0
(6 %) ﬁg Y2 ... 0 0
0 Qa3 ﬁg PN 0 0

S — . . . . . .
00 0 ... PBn-1 YN, -1
0 0 0 ...anx, —7N, BN, + 27N,

e Step 4

Iterate Stef to 3 for all time step.

The information of OSM in this paper was based in [1]. For miafermation on OSM,
please refer to [1].

3.3. Monte Carlo simulation method. To describe general Monte Carlo simulation, we also
adapt Eqg.(2.1). Integrate both side of Eq.(2.1) and regedayS(t) equation becomes

S(t) _ 5(0)6(7_0'5"2)””‘)[/“).

Let At be small time increment ant{nAt) be denoted by™. Then, discretized stock process
is defined as

gntl _ Sne(r—o.5o2)At+o\/EZ" for 0<n< Azt 1 (3.11)

wheren is integer and random variablg™ is independent and identically distributed (i.i.d)
with standard Normal distribution which is denoted /&0, 1). According to Eq.(3.11), we
generate enough large path to satisfy consistency of egimaSee Fig. 3.) Lefl/ denote
the number of iteration and denote set of all parameters and sample space. Then,

M
5(0, 5(0), 1(0)) = %e"‘TZA(T) (3.12)
i=1
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becomes good estimation of0, S(0), 1(0)) by Eqg.(2.2) where\(T) represented as Eq.(2.4).
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FIGURE 3. Schematic of path generation of MCS.

More information of Monte Carlo simulation method in finangéntroduced in [2].

4. COMPUTATIONAL RESULTS

4.1. Convergence test of FDM and MCS. To demonstrate consistency of the numerical
algorithms, we perform convergence tests. We set some p#&ssnas: = 0.03,5(0) =
100, K =100,T = 1,0 = 0.3. We test numerical scheme Eq.(3.3) with respecdt amd A7

for FDM. For truncated computational domain, we also/dgt= M; = 300 and we are going
to use these values unless otherwise specified. Table 1 $teowonhvergence of Asian fixed
strike type call option prices &5(0), 1(0),0) as we refiné, andA7. As you see, tendency of
prices flow with respect th and AT seem to be converges to a certain value.

TaBLE 1. Convergence test for European call option values by FDM.

Case h=14 h=2 h=1 h=05 h=025 h=0.125

AT =1/90 |10.250442 8.496569 7.677030 7.610064 7.579022 7.569500
AT =1/180 | 10.666462 9.004364 8.024811 7.598022 7.564093 7.548436
AT =1/360 | 10.867678 9.246414 8.299454 7.776086 7.558052 7.540982
AT =1/720 | 10.966702 9.364765 8.432927 7.919678 7.648182 7.537956
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Since Arithmetic Asian option does not have analytic solutiwe need to set reference
solution. We se¥’(5(0),1(0),0) = 7.529395 as reference solution by FDM very slight grid
such ash = 0.0625 andA7 = 1/720.

For MCS, we calculate estimation Eq.(3.12) with respecthwriumber of iteration. Let
N,, denote the number of iteration. Figure 4 shows convergeh®¢GS method. AsN,,
increases, numerical solution of MCS also seem to convergecertain value. (See figure 4
(a).) We compute prices By000 interval of iteration. Figure 4 (b) shows convergence with
respect taAz. To approximate integration of stock process, thadesS(t)dt ~ 0/ At gn At
, we setAt = 1/10000 unless otherwise specified so that the error of numericafmtion
becomes negligible. Table 2 represent numerical solutigri®)000 interval of iteration.

771 7871
—— MCS solutions

76015

N
o
T

Price of option
~
N

Price of option

731

721

0 05 1 15 2 25 3 0 0.5 1 15 2 25 3
The number of iteration x10° The number of iteration % 10°

(a) Convergence of MCS (b) Convergence with respect ot

FIGURE 4. Convergence test of MCS.

TABLE 2. Convergence test for European call option values by MCS.

N, 50000 100000 150000 200000 250000 300000
Price| 7.498124 7.515509 7.494195 7.523239 7.551128 7.527592

Our test could be enough evidence that both FDM and MCS cgesép a certain value.

In this section, we show the performance of the proposed rinat@lgorithms by numerical
experiments. All performance were computed on a 2.7 GH2 @8 GB of RAM loaded
with MATLAB 2016a [21]. We consider three case with respexiioney-ness such as in
the money, at the money and out of the money. Table 3 reprédsemarameters we set. In
this section, we also set reference solution by FDM with firnd gize such as = 0.0625
and At = 1/720. For at the money price, we u§e>29395 which is used for convergence
test. Other value81.423097 and1.743159 are in the money and out of the money reference
solution each.
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TABLE 3. Parameters

risk-neutral interest rate] 0.03 dividendg) 0
maturity(l") 1 volatility(o) 0.3
initial stock priceS(0) 100 in the money strikef;) 80

at the money striké(;) 100

out of the money strike(3) 120

85

4.2. Computational results of Finite Difference Method. We perform results of FDM with
respect toh and A7. In general, spatial gride could be set a§.5 or 1 for spatially one-
dimensional PDE. This value could be considered as enough gatue. However, since pro-
posed algorithm is spatially two-dimensional PDE, ressiitsws that spatial grid size should
be smaller. Thus, we set spatial gfidas0.25 unless otherwise specified. Table 4, 5 and 6
shows numerical results.

TABLE 4. In the money results of FDM with = 0.25 and Iteration numberl( AT)

Strike Iteration Number Reference Price Numerical Priceroi5f%) Computational Cost
90 21.459686 0.171 0.403min
180 21.446979 0.111 0.812min
80 360 21423097 21.441516 0.086 1.574min
720 21.489467 0.310 3.145min

TABLE 5. Atthe money results of FDM with = 0.25 and Iteration numberl{ A7)

Strike Iteration Number Reference Price  Numerical Priceroi5f%) Computational Cost
90 7.579022 0.659 0.400min
180 7.564093 0.461 0.780min
100 360 7.529395 7.558052 0.381 1.577min
720 7.648182 1.578 3.086min

TABLE 6. Out of the money results of FDM with = 0.25 and lIteration

number {/AT)
Strike Iteration Number Reference Price Numerical Priceroi5f%) Computational Cost
90 1.784897 2.394 0.391min
180 1.768427 1.450 0.793min
120 360 1.743159 1.770094 1.545 1.559min
720 1.792457 2.828 3.091min

As you see the tables, numerical solutions seem to convenmgderence solution except the
case thatAT = 1/720. We could interpret this results as time error become niefigagainst
spatial error by the fact that FDM has spatial er@q:?) and time erroiO(Ar)
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4.3. Computational results of Monte Carlo Simulation. Table 7, 8 and 9 are numerical
results of MCS. We formed the following tables like FDM sadut tables to compare results.

TABLE 7. In the money results of MCS

Strike Iteration Number Reference Price  Numerical Priceroi5f%) Computational Cost

5000 21.275702 0.688 0.019min

10000 21.734840 1.455 0.047min

80 50000 21423097 21.347946 0.351 2.272min
100000 21.474813 0.241 11.461min

TABLE 8. Atthe money results of MCS

Strike Iteration Number Reference Price Numerical Priceroi5f%) Computational Cost

5000 7.284143 3.257 0.021min

10000 7.638652 1.451 0.043min

100 50000 7.529395 7.546381 0.226 2.210min
100000 7.517309 0.161 10.942min

TABLE 9. Out of the money results of MCS

Strike Iteration Number Reference Price  Numerical Priceroi5f%) Computational Cost

5000 1.535304 11.924 0.019min

10000 1.635084 6.200 0.041min

120 50000 1.743159 1.715868 1.566 2.245min
100000 1.737488 0.325 11.147min

As you see the tables, solutions of MCS seem to converge doerafe solution. However,
MCS solution could not monotonously converge to referemdation ,whereas FDM solution
tend to go to reference solution monotonoushM\as increase except what we have mentioned
previous subsection. Figure 5 shows this fact. In pracfield, the number of simulatioV,,,
is set a®$0000 which is assumed to be enough number to get consistent éstimigh various
technique such as quasi random number [22], Brownian bfRRjeand variance reduction [24,
25]. In this paper, we set the maximum number of iteratiohCA900 without any technique.

5. CONCLUSIONS

In this paper, we presented a numerical algorithm for amticrAsian option by using the
OSM and method of characteristic with 2-dimensional PDE. adestruct the algorithm to
approximate the value of Asian option which does not havdytossolution. We modeled
Ingersoll’'s spatially 2-dimensional PDE by adapting FDMWDSM and method of char-
acteristic. We describe a detailed numerical algorithm @mdputational results illustrating
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FIGURE 5. Error-Cost Plot.

performance of proposed algorithms. As we mentioned puslypthere are many techniques
to evolve MCS. There are also various techniques to evolvisl BDch as adapting adaptive
schemes and high order schemes, various ways to deal witidboucondition to reduce time

and etc. In this paper, we compared pure FDM and MCS so thattweluce simple basic al-

gorithm to be understood easily and be adapted easily tousvays which evolve algorithms
more efficient. Fig. 5 (a) show that FDM is superior than MCHg. 5 (b) and (c) see also

our proposed FDM algorithm is good except extraordinarggwhich we have mentioned in
section of results of FDM. Indeed, our proposed FDM algaritls competitive even though

we consider extraordinary price made by fact that spatrar @overs time error.
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