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ABSTRACT. This paper presents the numerical valuation of the arithmetic Asian option by
using the operator-splitting method (OSM). Since there is no closed-form solution for the arith-
metic Asian option, finding a good numerical algorithm to value the arithmetic Asian option is
important. In this paper, we focus on a two-dimensional PDE.The OSM is famous for deal-
ing with plural-dimensional PDE using finite difference discretization. We provide a detailed
numerical algorithm and compare results with MCS method to show the performance of the
method.

1. INTRODUCTION

We consider an efficient and accurate finite difference method [1] and Monte Carlo simula-
tion [2] for an arithmetic Asian option. The Asian option is acontract that gives the holder the
right to buy an asset based on its average price over some prescribed period of time [3]. There
are two types of Asian options such as arithmetic Asian option and geometric Asian option.
Geometric Asian option with payoff which depends on geometric mean of underlying asset
over time interval has a closed form solution. On the other hand, arithmetic Asian option with
payoff which depends on arithmetic mean of underlying assetover time interval does not have
a closed form solution. Thus, finding a good numerical algorithm to value arithmetic Asian
option is important.

A lot of previous studies for the Asian option have been implemented. There are a number of
studies to approximate this option [4, 5, 6, 7]. However, those approximation formula are only
suitable for a simple type of Asian option, i.e., European type of Asian option. In general, the
value of derivative can be found by solving PDE [8]. There arefive representative forms of PDE
for Asian option. Two of them have two spatial dimensions andthey are derived by Ingersoll
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in [9] and Duffy in [1]. They are derived by using same hedgingargument underlying Black–
Scholes in [10]. In this paper, we are going to deal with PDE derived by Ingersoll. Rest of
them have one spatial dimension which is derived by change ofnumeraire technique. Ingersoll
setR = S/I and Duffy setR = I/S whereS is stock process andI =

∫

Sdt. And they work
some stochastic calculus to derived deterministic PDE in [1, 9, 11]. Turning upside down of
numerator and denominator and some work of stochastic calculus can make PDE more simpler.
However, these PDEs are only available for floating strike type of Asian option. In 1995,
Rogers and Shi [12] derived one spatial dimensional PDE which is available for both floating
strike type and fixed strike type of Asian options by settingx = [K −

∫ t

0 S(τ)µ(dτ)]/St.
Floating and fixed strikes are as follows:(A(T )−K)+, (K −A(T ))+, (S(T )−A(T ))+, and
(A(T ) − S(T ))+, respectively, for fixed strike call, fixed strike put, floating strike call, and
floating strike put, whereA(T ) = I(T )/T .

Reduction of spatial dimension for Asian option makes PDE more simpler. Also, when we
solve Asian option numerically, it reduces computational cost and increases accuracy of the
numerical solution. However, it may not always be possible to find a similarity solution [1] and
derived one spatial dimensional PDEs are not suitable for barrier type of Asian option and local
volatility model [13]. Also, combining other properties ofother exotic option with Asian option
will make problems more complicated. It is hard to find boundary conditions since one spatial
dimensional PDE is not intuitive than two spatial dimensional PDE. Thus, there is necessity of
good numerical algorithm to solve two spatial dimensional PDE in recent complicated financial
market situation. We are going to adapt OSM and method of characteristic for one of spatial
dimension which has no diffusion term to solve two spatial dimensional PDE. This concept
was introduced by Duffy in [1] but was not described in detail. To show performance of the
proposed algorithm, we will compare with MCS method.

Section 2 presents arithmetic Asian option and PDE derived by Ingersoll in [9]. Section 3
describes numerical solution algorithm using finite difference scheme and OSM with method
of characteristic and presents a numerical algorithm to price arithmetic Asian option by using
MCS method. Section 4 presents the computational results showing the performances of the
MCS method and FDM using OSM, that is, comparative study. Conclusions are presented in
Section 5.

2. ARITHMETIC ASIAN OPTION PDE BY INGERSOLL

We adapt the classical Geometric Brownian Motion (GBM) for stock processS(t) :

dS(t) = rS(t)dt+ σS(t)dW (t) (2.1)

where r is risk-neutral constant interest rate,σ is constant volatility anddW (t) is standard
Brownian Motion.V (T, S(T ), I(T )) denote payoff function of Asian option where

I(t) =

∫ t

0
S(θ)dθ.
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By definition, dynamics of variable I is

dI(t) = S(t)dt

which will be used for It̂o’s lemma. There must exist some functionv(t, S(t), I(t)) such that

v(t, S(t), I(t)) = Ẽ

[

D(T )

D(t)
V (T, S(T ), I(T ))|F(t)

]

= Ẽ

[

e−r(T−t)V (T, S(T ), I(T ))|F(t)
]

(2.2)

where Ẽ represent risk-neutral expectation andD(t) denote discount factor. Since we as-
sumed constant interest rate, discount factor isD(t) = e−rt. Price functionv(t, S(t), I(t))
can represent any strike type of Asian option. By property ofrisk-neutral pricing, process
D(t)v(t, S(t), I(t)) = e−rtv(t, S(t), I(t)) must be martingale. By applying Itô’s lemma, dy-
namics ofD(t)v(t, S(t), I(t)) becomes

d(e−rtv(t, S(t), I(t))) = e−rt

[

−rvdt+ vtdt+ vSdS + vIdI +
1

2
vSSdSdS

]

= e−rt

[

−rv + vt + rSvS + SvI +
1

2
σ2vSS

]

dt+ e−rtσSvSd˜W (t)

wherevx denote differential of v on x-direction and˜W (t) is risk-neutral Brownian motion. For
this process to be martingale,dt term of this process must be zero. Thus, we derived Ingersoll’s
2-spatial dimensional PDE as follows

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
+ S

∂V

∂I
− rV = 0. (2.3)

To demonstrate following numerical algorithms, we set payoff function as fixed strike call

V (T, S(T ), I(T ))Λ(T ) = (A(T )−K)+. (2.4)

Without loss of generality, other payoff function also can be adapted in those algorithms by
changing some boundary conditions and initial conditions.

3. NUMERICAL METHODS

In this section, we describe the numerical discretization of Eq. (2.3). We also present the
operator-splitting algorithm in detail. Particularly, weare going to use method of characteristic
for one of spatial dimension which does not have diffusion term.

3.1. Finite difference discretization. LetLBS be the operator

LBS =
1

2
σ2s2

∂2v

∂s2
+ rs

∂v

∂s
+ s

∂v

∂i
− rv
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andτ be the remaining time to maturity such thatτ = T − t whereT is maturity. Then, the
two spatial dimensional Ingersoll’s equation can be rewritten as

∂v

∂τ
= LBS , for (τ, s, i) ∈ [0, T ]× Ω,

Value of this derivative is defined on unbounded domain such that{(τ, s, i) | τ ∈ [0, T ], s ≥
0, i ∈ R} as you can see in [14]. To compute price of option in computer,we truncate this
domain as finite computational domain such that{(τ, s, i) | τ ∈ [0, T ], 0 ≤ s ≤ Ms, 0 ≤
i ≤ Mi}, whereMs andMi are large enough number. In general,Ms andMi could be set
as two or three times of strike priceK. Then, error of the price driven by truncation becomes
ignorable [15]. Note that setting of domaini is {i | 0 ≤ i ≤ Mi}. Although the original
domain fori is {i | i ∈ R}, we assumed thati is almost surely positive becauseI is defined as
I(t) =

∫ t

0 S(θ)dθ and classically defined GBM stock processS(t) is positive on any time. We
have Dirichlet boundary condition whens = 0 such that

v(τ, 0, i) = e−rτ (
i

T
−K)+

for τ ∈ [0, T ] and0 ≤ i ≤ Mi. Also, for rest of three artificial boundaries, we have linear
boundary condition [16, 17, 18, 19] such that

∂2

∂i2
v(τ, s, 0) =

∂2

∂i2
u(τ, s,Mi) =

∂2

∂s2
u(τ,Ms, i) = 0

for τ ∈ [0, T ], 0 ≤ s ≤ Ms and0 ≤ i ≤ Mi.
LetNs,Ni andNτ denote the numbers of grid points fors-, i- andτ -directions, respectively.

We are going to adapt uniform grid ash = Ms/Ns = Mi = /Ni and∆τ = T/Nτ which
discretize the settled computational domain[0, T ] × Ω whereΩ = (0,Ms) × (0,Mi). Figure
1 illustrates the 2-dimensional uniform grid with a spatialstep size h.

According to discretization,vnjk denote approximated numerical solution such that

vnjk = v(τn, sj, ik) = v(n∆τ, jh, kh)

for n = 0, . . . , Nτ , j = 1, . . . , Ns−1 andk = 1, . . . , Ni−1. For Dirichlet boundary condition
whens = 0, numerical approximation in each time steps defined as

vn0k = v(n∆τ, 0, kh) = e−rn∆τ (
kh

T
−K)+.

Since other directions are used linear boundary condition and formula used linear boundary
condition do not depend on time step, for all time steps, numerical approximation can be de-
noted as

vj0 = 2vj1 − vj2, vj,Ni
= 2vj,Ni−1 − vj,Ni−2

for j = 1, · · · , Ns − 1 and

vNs,k = 2vNs−1,k − vNs−2,k

for k = 1, · · · , Ni − 1.
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FIGURE 1. Schematic of uniform 2-dimensional grid with a spatial step size h.

3.2. Operator-splitting method. The concept of operator-splitting method is to transfer
problem of multi-dimensional PDE to problem of multiple one-dimensional problems [1, 20].
In this case, we are going to use method of characteristic fori-direction whose solution could be
represented as analytic solution by solving simple partialdifferential equation. Simple partial
differential equation is

Vτ − SVI = 0. (3.1)

We can find analytic solution by some work with Eq.(3.1) such that

V (S, I, τ) = V (S, I(τ − τn), τn) for τ ≥ τn

Verification of solution is as follows:

Since Vτ = SV ′(S, I + S(τ − τn), τn) andVI = V ′(S, I + S(τ − τn), τn),

hence Vτ − SVI = SV ′ − SV ′ = 0.

Adapting our discretized scheme to this solution, solutionfor each time step could be repre-
sented as

V (S, I, τn+1) = V (S, I + S∆τ, τn). (3.2)

Also, because solution could be in between points that we have discretized, we are going to use
linear interpolation for computing this problem. In general, the basic operator-splitting scheme
for the spatial two-dimensional Ingersoll’s PDE as follows:

vn+1
jk − vnjk

∆τ
= Li

IGv
n+ 1

2
jk + Ls

IGv
n+1
jk , (3.3)
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where the operatorLi
IG andLs

IG defined by

Li
IGv

n+ 1
2

jk =
vnj,k+1 − vnj,k

h
sj

Ls
IGv

n+1
jk =

(σsj)
2

2

vn+1
j−1,k − 2vn+1

jk + vn+1
j+1,k

h2
+ rsj

vn+1
j+1,k − vn+1

jk

h
+ rvn+1

jk .

The first step is using analytic solution in the i-direction.Next step is solving implicitly in
the s-direction. We set temporary time stepn+ 1

2 for compute OS-scheme which does not exist
in real. This OSM reduce 2-dimensional problem into two 1-dimensional problem.

By Eq.(3.2), discrete solution is

v
n+ 1

2
jk =

vnj,k+1 − vnjk
h

sj∆τ + vnjk. (3.4)

This implies discrete difference i-direction operator using method of characteristicLi
IG is

defined by

v
n+ 1

2
jk − vnjk

∆τ
= Li

IGv
n+ 1

2
jk . (3.5)

Also, implicitly approximating s-direction operatorLs
IG is defined by

vn+1
jk − v

n+ 1
2

jk

∆τ
= Li

IGv
n+1
jk . (3.6)

Note that sum of two Eqs.(3.5) and (3.6) is Eq.(3.3). Before iterate Algorithm’s logic we set
v0jk = Λ(T ). An algorithm of the OSM is as follows:
Algorithm OS

• Step 1

Initialize vn0k = e−rn∆τ (kh
T

−K)+ in every time step.

• Step 2

To describe as general form of OSM, Eq. (3.5) is used. However, to compute i-
direction solution, Eq. (3.5) is rewritten as Eq.(3.4). Foreachj, we have

v
n+ 1

2
jk =

vnj,k+1 − vnjk
h

sj∆τ + vnjk (3.7)

The first step of the OS method is then implemented in a loop over thes-direction:

for j = 0 : Ns

for k = 1 : Ni − 1

Solvev
n+ 1

2
jk by Eq. (3.7) (see Fig.2(a))

end
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Use boundary condition

v
n+ 1

2
j0 = 2v

n+ 1
2

j1 − v
n+ 1

2
j2 , v

n+ 1
2

j,Ni
= 2v

n+ 1
2

j,Ni−1 − v
n+ 1

2
j,Ni−2

end

Note thatv
n+ 1

2
0,k = vn0k for k = 0, . . . , Ni becauses0 = 0. Thus, Step2 do nothing

for v0,0:Ni
.

v0k v1k v
Nsk

v
j0

v
j1

v
jNi

(a) Step 2 (b) Step 3

FIGURE 2. Two steps of the OSM.

• Step 3

Unlike in Step 1, Eq. (3.6) is rewritten as follows:

αjv
n+1
j−1,k + βjv

n+1
jk + γjv

n+1
j+1,k = fjk, (3.8)

where

αj = −
1

2

σ2s2j
h2

, βj =
1

∆τ
+

σ2s2j
h2

+
rsj
h

+ r,

γj = −
1

2

σ2s2j
h2

−
rsj
h

, for k = 1, ..., Ni − 1

and

f1k =
v
n+ 1

2
1k

∆τ
− α1e

−rn∆τ (
kh

T
−K)+, (3.9)

fjk =
v
n+ 1

2
jk

∆τ
for j = 2, . . . , Ns − 1. (3.10)

Note that we adapt Dirichlet boundary condition to get the coefficients.
As with Step 2, Step 3is then operated in a loop over thei-direction:
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for k = 0 : Ni

for j = 1 : Ny − 1

Setfjk by Eq. (3.10)

end

SolveAsu
n+1
1:Ns−1,k = f1:Ns−1,k by using Thomas algorithm (see Fig. 2(b))

end

HereAs is tridiagonal matrix constructed from Eq. (3.8) with a Dirichlet boundary
condition forj = 0 and a linear boundary condition forj = Ns

As =



















β1 γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. .. . . . . . .

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy
− γNy

βNy
+ 2γNy



















.

• Step 4

Iterate Step1 to 3 for all time step.

The information of OSM in this paper was based in [1]. For moreinformation on OSM,
please refer to [1].

3.3. Monte Carlo simulation method. To describe general Monte Carlo simulation, we also
adapt Eq.(2.1). Integrate both side of Eq.(2.1) and rearrange byS(t) equation becomes

S(t) = S(0)e(r−0.5σ2)t+σW (t).

Let∆t be small time increment andS(n∆t) be denoted bySn. Then, discretized stock process
is defined as

Sn+1 = Sne(r−0.5σ2)∆t+σ
√
∆tZn

for 0 ≤ n ≤
T

∆t
− 1 (3.11)

wheren is integer and random variableZn is independent and identically distributed (i.i.d)
with standard Normal distribution which is denoted asN(0, 1). According to Eq.(3.11), we
generate enough large path to satisfy consistency of estimation. (See Fig. 3.) LetM denote
the number of iteration andΩ denote set of all parameters and sample space. Then,

v̂(0, S(0), I(0)) =
1

M
e−rT

M
∑

i=1

Λ(T ) (3.12)
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becomes good estimation ofv(0, S(0), I(0)) by Eq.(2.2) whereΛ(T ) represented as Eq.(2.4).

T

S(T )

0 t

S(t)

S(0)

FIGURE 3. Schematic of path generation of MCS.

More information of Monte Carlo simulation method in financeis introduced in [2].

4. COMPUTATIONAL RESULTS

4.1. Convergence test of FDM and MCS. To demonstrate consistency of the numerical
algorithms, we perform convergence tests. We set some parameters asr = 0.03, S(0) =
100,K = 100, T = 1, σ = 0.3. We test numerical scheme Eq.(3.3) with respect toh and∆τ
for FDM. For truncated computational domain, we also setMs = Mi = 300 and we are going
to use these values unless otherwise specified. Table 1 show the convergence of Asian fixed
strike type call option prices at(S(0), I(0), 0) as we refineh and∆τ . As you see, tendency of
prices flow with respect toh and∆τ seem to be converges to a certain value.

TABLE 1. Convergence test for European call option values by FDM.

Case h = 4 h = 2 h = 1 h = 0.5 h = 0.25 h = 0.125
∆τ = 1/90 10.250442 8.496569 7.677030 7.610064 7.579022 7.569500
∆τ = 1/180 10.666462 9.004364 8.024811 7.598022 7.564093 7.548436
∆τ = 1/360 10.867678 9.246414 8.299454 7.776086 7.558052 7.540982
∆τ = 1/720 10.966702 9.364765 8.432927 7.919678 7.648182 7.537956
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Since Arithmetic Asian option does not have analytic solution, we need to set reference
solution. We setV (S(0), I(0), 0) = 7.529395 as reference solution by FDM very slight grid
such ash = 0.0625 and∆τ = 1/720.

For MCS, we calculate estimation Eq.(3.12) with respect to the number of iteration. Let
Nm denote the number of iteration. Figure 4 shows convergence of MCS method. AsNm

increases, numerical solution of MCS also seem to converge to a certain value. (See figure 4
(a).) We compute prices by5000 interval of iteration. Figure 4 (b) shows convergence with
respect to∆t. To approximate integration of stock process, that is,

∫ T

0 S(t)dt ≈
∑T/∆t

0 Sn∆t
, we set∆t = 1/10000 unless otherwise specified so that the error of numerical integration
becomes negligible. Table 2 represent numerical solutionsby 50000 interval of iteration.
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(a) Convergence of MCS
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FIGURE 4. Convergence test of MCS.

TABLE 2. Convergence test for European call option values by MCS.

Nm 50000 100000 150000 200000 250000 300000
Price 7.498124 7.515509 7.494195 7.523239 7.551128 7.527592

Our test could be enough evidence that both FDM and MCS converges to a certain value.
In this section, we show the performance of the proposed numerical algorithms by numerical

experiments. All performance were computed on a 2.7 GHz Intel PC 8 GB of RAM loaded
with MATLAB 2016a [21]. We consider three case with respect to money-ness such as in
the money, at the money and out of the money. Table 3 representthe parameters we set. In
this section, we also set reference solution by FDM with fine grid size such ash = 0.0625
and∆τ = 1/720. For at the money price, we use7.529395 which is used for convergence
test. Other values21.423097 and1.743159 are in the money and out of the money reference
solution each.
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TABLE 3. Parameters

risk-neutral interest rate(r) 0.03 dividend(q) 0
maturity(T ) 1 volatility(σ) 0.3

initial stock priceS(0) 100 in the money strike(K1) 80
at the money strike(K2) 100 out of the money strike(K3) 120

4.2. Computational results of Finite Difference Method. We perform results of FDM with
respect toh and∆τ . In general, spatial gridh could be set as0.5 or 1 for spatially one-
dimensional PDE. This value could be considered as enough small value. However, since pro-
posed algorithm is spatially two-dimensional PDE, resultsshows that spatial grid size should
be smaller. Thus, we set spatial gridh as0.25 unless otherwise specified. Table 4, 5 and 6
shows numerical results.

TABLE 4. In the money results of FDM withh = 0.25 and Iteration number (1/∆τ )

Strike Iteration Number Reference Price Numerical Price Error (%) Computational Cost

80

90

21.423097

21.459686 0.171 0.403min
180 21.446979 0.111 0.812min
360 21.441516 0.086 1.574min
720 21.489467 0.310 3.145min

TABLE 5. At the money results of FDM withh = 0.25 and Iteration number (1/∆τ )

Strike Iteration Number Reference Price Numerical Price Error (%) Computational Cost

100

90

7.529395

7.579022 0.659 0.400min
180 7.564093 0.461 0.780min
360 7.558052 0.381 1.577min
720 7.648182 1.578 3.086min

TABLE 6. Out of the money results of FDM withh = 0.25 and Iteration
number (1/∆τ )

Strike Iteration Number Reference Price Numerical Price Error (%) Computational Cost

120

90

1.743159

1.784897 2.394 0.391min
180 1.768427 1.450 0.793min
360 1.770094 1.545 1.559min
720 1.792457 2.828 3.091min

As you see the tables, numerical solutions seem to converge to reference solution except the
case that∆τ = 1/720. We could interpret this results as time error become negligible against
spatial error by the fact that FDM has spatial errorO(h2) and time errorO(∆τ)
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4.3. Computational results of Monte Carlo Simulation. Table 7, 8 and 9 are numerical
results of MCS. We formed the following tables like FDM solution tables to compare results.

TABLE 7. In the money results of MCS

Strike Iteration Number Reference Price Numerical Price Error (%) Computational Cost

80

5000

21.423097

21.275702 0.688 0.019min
10000 21.734840 1.455 0.047min
50000 21.347946 0.351 2.272min
100000 21.474813 0.241 11.461min

TABLE 8. At the money results of MCS

Strike Iteration Number Reference Price Numerical Price Error (%) Computational Cost

100

5000

7.529395

7.284143 3.257 0.021min
10000 7.638652 1.451 0.043min
50000 7.546381 0.226 2.210min
100000 7.517309 0.161 10.942min

TABLE 9. Out of the money results of MCS

Strike Iteration Number Reference Price Numerical Price Error (%) Computational Cost

120

5000

1.743159

1.535304 11.924 0.019min
10000 1.635084 6.200 0.041min
50000 1.715868 1.566 2.245min
100000 1.737488 0.325 11.147min

As you see the tables, solutions of MCS seem to converge to reference solution. However,
MCS solution could not monotonously converge to reference solution ,whereas FDM solution
tend to go to reference solution monotonously asNm increase except what we have mentioned
previous subsection. Figure 5 shows this fact. In practicalfield, the number of simulationNm

is set as60000 which is assumed to be enough number to get consistent estimator with various
technique such as quasi random number [22], Brownian bridge[23] and variance reduction [24,
25]. In this paper, we set the maximum number of iteration as100000 without any technique.

5. CONCLUSIONS

In this paper, we presented a numerical algorithm for arithmetic Asian option by using the
OSM and method of characteristic with 2-dimensional PDE. Weconstruct the algorithm to
approximate the value of Asian option which does not have analytic solution. We modeled
Ingersoll’s spatially 2-dimensional PDE by adapting FDM with OSM and method of char-
acteristic. We describe a detailed numerical algorithm andcomputational results illustrating
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(a) Error-Cost Plot in caseK = 80
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(b) Error-Cost Plot in caseK = 100
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FIGURE 5. Error-Cost Plot.

performance of proposed algorithms. As we mentioned previously, there are many techniques
to evolve MCS. There are also various techniques to evolve FDM such as adapting adaptive
schemes and high order schemes, various ways to deal with boundary condition to reduce time
and etc. In this paper, we compared pure FDM and MCS so that we introduce simple basic al-
gorithm to be understood easily and be adapted easily to various ways which evolve algorithms
more efficient. Fig. 5 (a) show that FDM is superior than MCS. Fig. 5 (b) and (c) see also
our proposed FDM algorithm is good except extraordinary price which we have mentioned in
section of results of FDM. Indeed, our proposed FDM algorithm is competitive even though
we consider extraordinary price made by fact that spatial error covers time error.
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