J. KSIAM Vol.14, No.4, 201-210, 2010

A FAST AND ACCURATE NUMERICAL METHOD FOR MEDICAL IMAGE
SEGMENTATION

YIBAO LI AND JUNSEOK KIM'

DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-701, REPUBLIC OF KOREA
E-mail address: cfdkim@korea.ac.kr

ABSTRACT. We propose a new robust and accurate method for the numerical solution of med-
ical image segmentation. The modified Allen-Cahn equation is used to model the boundaries
of the image regions. Its numerical algorithm is based on operator splitting techniques. In the
first step of the splitting scheme, we implicitly solve the heat equation with the variable dif-
fusive coefficient and a source term. Then, in the second step, using a closed-form solution
for the nonlinear equation, we get an analytic solution. We overcome the time step constraint
associated with most numerical implementations of geometric active contours. We demonstrate
performance of the proposed image segmentation algorithm on several artificial as well as real
image examples.

1. INTRODUCTION

Image segmentation is one of the fundamental tasks in automatic image analysis. Its goal is
to partition a given image into several regions in each of which the intensity is homogeneous.
Up to now, a great number of algorithms have been proposed to solve the image segmentation
problem. Among them, there are two widely used classical basic models based on the edges
or the regions. For the geodesic snake based on the edges [2, 4, 5, 8, 9, 13], a gradient flow is
used as a stopping operator to get accurate boundaries with high variation in gradient to attract
the curve to the object boundary, while Chan-Vese method [6, 12], which is a representative
model based on the regions, is widely applied for various applications in image processing
applications. We are interested in medical image segmentation which has edges, therefore, it is
natural choice to use geometric active contour models.

In this paper, we propose a robust and accurate geometric active contour model and its nu-
merical solution algorithm for image segmentation. The model is based on the modified Allen-
Cahn equation. The Allen-Cahn (AC) equation was originally introduced as a phenomenologi-
cal model for anti-phase domain coarsening in a binary alloy [1]. Also, AC equation is used to
model mean-curvature flow problems. The mean-curvature flow is one of important ingredients
in image segmenting active contours. The main reason why we use AC equation for image seg-
mentation is that there exists a very fast computational technique such as a multigrid method.
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An operator splitting technique is used to solve the model numerically. The nonlinear part in
the equation can be solved analytically because there is a closed-form solution. In particular,
we propose an initialization algorithm based on an edge stopping function for the fast image
segmentation. We present various numerical results on artificial and real images to demonstrate
the robustness and the accuracy of the proposed numerical method.

The outline of this paper is the following. In Sec. 2, the governing equation based on Allen-
Cahn equation is presented. In Sec. 3, we describe the proposed hybrid operator splitting
method. In Sec. 4, we perform some characteristic numerical experiments for computational
examples. Finally, conclusions are drawn in Sec. 5.

2. MODIFIED ALLEN-CAHN EQUATION

For a given image fy(x), where x = (x,y), on the image domain {2 and its segmenting
curve C. By the level-set function ¢(x),

>0 ifx € inside C,
p(x)¢ =0 ifxeC,
<0 ifx € outside C.

The geometric active contour model based on the mean curvature motion is given by the fol-
lowing evolution equation [4]:

Vo
o= aWIVOIV - (5 ) + Aol ol
where A is a parameter and g is an edge stopping function. For example,

1
) = TR, « GO
where we will use k£ = 2 and (G, * fo)(x), a smoother version of fj, is the convolution of the
given image fy with the Gaussian function G, = ﬁe*(ﬁﬂ’%/ (20%) The function g(fo(x))
is close to zero where the gradient of the image is high and is close to one in homogeneous
regions.
We propose a phase-field approximation for the geometric active segmentation by using the
modified Allen-Cahn equation. In a phase-field model, we introduce a phase-field, ¢, which is
plus one (black) and minus one (white). Then, the governing equation is as follows:

o= ats) (~E + 26) + 20l F(6), 02)

where F(¢) = 0.25(1 — ¢?)? is a double-well potential. Note that Eq. (2.2) is similar to the
model proposed in [3], however, the new one is more robust and efficient than the previous
model.

In Eq. (2.2), g(fo) is an edge stopping function which makes the evolution of the phase-field
slow. ¢y = —@ + A¢ is the equation for the motion by mean curvature. Depending on the
sign of A\, \F'(¢) makes the level set of the phase-field grows or shrinks.

2.1)
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3. PROPOSED NUMERICAL SOLUTION

In this section, we shall discretize Eq. (2.2) in a two dimensional space, i.e., Q2 = (a,b) X
(c,d). Let N, and N, be positive even integers, Az = (b — a)/N,, Ay = (d — ¢)/N,, be the
uniform mesh sizes. For simplicity of exposition, we take Ax = Ay = h. Let Q), = {(x4,y;) :
z; = (i —0.5)h, y; = (j —0.5)h, 1 <1 < Ng, 1 < j < N,} be the set of cell centers. Let

7; be approximations of &(x4, Y, nAt), where At is the time step. The numerical convolution
G, * fo can be computed using a 3 x 3 smoothing kernel as following:

i+l j+1

fo [(i-p)? +(J 0)?)n?
(G *fO ij = Z Z 271‘2‘(]2 20°

p=i—1qg=75—1

Then, the edge function can be calculated by

1
(G *fo)xz] (G *fO)yzg
where (Go * f0)z,i; = [(Go * f0)i+1,; — (Go * fo)i—1,j]/(2h). The zero Neumann boundary

condition is used. For example, fon, 41; = fon, ; forj = 1,---, Ny. Then we propose the
following operator splitting numerical algorithm for Eq. (2.2):

9(fo)ij =

x _ pn
”Tt” = guBadl; + Agi F (0%, G.1)
¢n+1 A% F,(¢n+1)
N T ; (3.2)
If we add these two equations, then we have
o — o F(gnry )
424&?42"_9U ——— +Dud; | + Mg (). (3.3)

The implicit discrete Eq. (3.1) can be solved by a multigrid method [11] with the initial
condition ¢". Since we can consider Eq. (3.2) as an approximation of the equation
¢—¢°

o =9 (3.4)

by an implicit Euler’s method with the initial condition ¢*. Then the solution at t = At of Eq.
(3.4), solved by the method of separation of variables [10], is given as

*

¢n+1 — i

QQZ]At 72gijAt '
e + (¢5;)? (1—6 <2 )
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Finally, our proposed scheme is written as

£
—— = gijAadi; + Agii F(]),
At
n+l ;Fj

) B 2g;; At B 2g;; At .
eI 4 (g5 (1—e T

4. COMPUTATIONAL EXAMPLES

In this section, we present numerical results using the proposed numerical algorithm on
various synthetic and real images. We show that a very fast and accurate minimization can be
achieved by the proposed algorithm. In our numerical experiments, we normalize the given
image f as fo = %, where f;,q. and fp., are the maximum and the minimum values
of the given image, respectively. Across the interfacial regions, the phase-field varies from
—0.9 to 0.9 over a distance of approximately 21/2¢ tanh*1(0.9). Therefore, if we want this
value to be approximately m grid points, then the ¢ value needs to be taken as follows:

_ hm
© 2y/2tanh~1(0.9)

The value of m should be at least two or three so that the interface under goes smooth transition,
otherwise we will overestimate the discrete Laplacian in the governing equation (2.2). When
we have enough number of mesh points, we can afford to use larger value of m so that we
have smooth transition in the interfacial region. However, at the same time, we do not want too
much smoothed interfacial transitions. To speed up simulation, we simply initialize ¢° with an
edge stopping function, g and a given tolerance, tol. The initialization algorithm is listed as
follows:

€m

Set a tolerance tol and ¢° = —1 everywhere in the computational domain. And take
the following steps (1-4):
Step 1~ for (i=1;i<N, ;i++) for (j=Ny;j>1;75--){
if ( g;j< tol) break ; else <Z>% =1;}
Step 2 for (j=1; j<N, ; j++) for (i=1;i<N, ; i++) {
if ( gij< tol) break ; else ¢7; =1}
Step 3 for (i=1;i<N, ;i++) for (j=1; j<N,; j++) {
if ( gi;< tol) break ; else qﬁ% =1;}
Step 4 for (j=1; j<N, ; j++) for (i=Ny;i>1;1i--){
if ( gij< tol) break ; else ¢f; =1 ;}
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In our first example, we show that our proposed model can detect different objects. In Fig. 1,
we show how our proposed initialization algorithm works. (a) is the given image and (b), (c),
(d), and (e) are steps 1, 2, 3, and 4 in the initialization algorithm, respectively. In Fig. 2, the
computational domain is set to 2 = (0,1) x (0, 1) with a 64 x 64 mesh. Interface parameter
€4, time step At = 4E-4, and A = 1E4 are used. It only took 9 iterations, which is one order
of magnitude smaller than the method in [8].

(a) (b) (©) (d) (e)

FIGURE 1. Initialization algorithm: (a) original image, (b) Step 1, (c) Step 2,
(d) Step 3, and (e) Step 4.

(a) (b) (c) (d)

FIGURE 2. (a) Original image, (b) O iteration, (c) 3 iterations, and (d) 9 iterations.

Fig. 3 shows our proposed method is faster than the previous method, which also used the
Allen-Cahn equation for image segmentation [3]. The computational domain is set to =
(0,1) x (0,1) with a 128 x 128 mesh. Interface parameter €g, time step At = 6E-4, and
A = 2.5E4 are used. It took only 20 iterations, which is one order of magnitude smaller than
the previous method, which used 532 iterations. Here, we also note that without our proposed
initialization algorithm, it took 85 iterations in our computational experiment.

Next example image is from [7] and has varying illumination and highly concave shape (see
Fig. 4 (a)). The computational domain is set to Q = (0,1) x (0,1) with a 128 x 128 mesh.
Interface parameter g, time step At = 3E-4, and A = 2E4 are used. Fig. 4 (b) shows the
initial configuration using our proposed initialization algorithm. As can be seen from Fig. 4
(d), image segmentation is successfully done only after 10 iterations.
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FIGURE 4. (a) Image which has varying illumination and highly concave
shape, (b) O iteration, (c) 5 iterations, and (d) 10 iterations.

In Fig. 5, we show a numerical result on a real medical image of a hip joint. The computa-
tional domain is set to 2 = (0,1) x (0, 1) with a 128 x 128 mesh. Interface parameter eg, time
step At = 3E-5, and A = 2.5E4 are used. The method produces visually clear results with
only 10 iterations. As can be seen, our proposed method has performed well in this medical
image segmentation.

In Fig. 6, the segmentation of another hip joint image is shown on the computational domain
Q= (0,1) x (0,1) with a 256 x 256 mesh. Interface parameter eg, time step At = 5E-5, and
A = 1.5E4 are used. As can be observed, the agreement between the area of hip and the
segmentation of image is obvious.

Finally, we will explain why we chose £ = 2 in Eq. (2.1) by using a synthetic image as
shown in Fig. 7(a). This experiment is performed on the computational domain 2 = (0, 1) x
(0,1) with a 128 x 128 mesh. Interface parameter ¢4, time step At = 5E-5, and A\ = 5E4 are
used. We use the following function as an original image:

0.2 —+/(z —0.5)2 + (y — 0.5)2
V2e '

Fig. 7(b) shows the edge stopping function, g(fy), with & = 1. As can be observed in Fig.
7(c), when k£ = 1 (solid line), the edge stopping function is not close to zero near the edge

f(z,y) = tanh
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(c) (d)

FIGURE 5. (a) Original image, (b) mesh image, (c) contour image, and (d) 10 iterations.

of the image. This implies that the segmenting boundary will evolve toward inside the object
boundary we want to segment. Fig. 7(d) shows the numerical result with £ = 1 and as we
expected the segmenting boundary passed the edge of the object at 150 iterations. In the cases
of £ = 2 and 3, the edge stopping functions have almost zero values near the interface. Figs.
7(e) and 7(f) show results with k& = 2 and k = 3, respectively. The segmenting boundary
stopped near the edge of the object. Generally, the higher order of k, the costly computational
time. Therefore, in practice, k = 2 is commonly used.
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FIGURE 6. (a) Original image, (b) O iteration, (c) 4 iterations, and (d) 20 iterations.

5. CONCLUSION

We have shown that our proposed algorithm achieves faster segmentation of binary images
than the previous methods. We used a fast solver such as a multigrid method for solving heat
equation and an analytic solution for the nonlinear equation. To speed up image segmentation,
we developed the initialization algorithm which initialized ¢° with an edge stopping function,
g and a given tolerance, tol. We validated the proposed numerical method by various numerical
results on artificial and real images.
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- - -Initial contour
— 150 iterations

- - -Initial contour
— 150 iterations

- - -Initial contour
—150 iterations

(d) (e) ()

FIGURE 7. (a) Original image, (b) edge stopping function with £k = 1, (¢)
slice plot of edge functions at y = 0.5 with different k, and (d), (e), and (f) are
result contours at 150 iterations with k = 1, kK = 2, and k = 3, respectively.
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