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Abstract

This article is concerned with the algorithm for the Chebyshev estimation with/
without linear equality and/or inequality constraints, The algorithm employs a linear
scaling transformation scheme to reduce the computational burden which is induced
when the data set is quite large. The convergence of the proposed algorithm is
proved. And the updating and orthogonal decomposition techniques are considered to
improve the computational efficiency and numerical stability.

1. Introduction

The Chebyshev estimator, which is also called the L., —-estimator or the least maximum
absolute deviation estimator, is considered as an alternative to the least squares estimator, It
is attractive for short-tailed underlying distribution cases since it is a maximum likelihood
estimator when the distribution of error is uniform. Rice and White(1964) and Appa and
Smith(1973) introduced the properties of the Chebyshev estimator.

In this article we consider the unconstrained and constrained Chebyshev estimation problem
in the multiple linear regression. The constrained problem includes the linear equality and
inequality constraints as follows,

y=XB+e, £ GB=Zu, (1.1)

where v denotes an xn-vector of response variable, X represents a full-rank =X matrix of
regressor variables including an intercept term, £ is a p-vector of regression parameters, &
is an =m-vector of random errors, G is a gXp constraint matrix, [ is a g-vector of lower

bound, and u is a g-vector of upper bound.
The following are special cases to the problem (1.1). () if /;=—c0 and wu;=cc for all g,

it is the ordinary unconstrained estimation, (ii) if /;=—o0 and wu;#°c for some 7, it has
one~sided constraints from above, (iii) if /5 —c0 and w;=cc for some ¢, it has one-sided
constraints from below, (iv) if ;=0 and u;= o for some i, it has non-negative constraints,

(v) if /;=wu; for some i, it has equality constraints.
The Chebyshev estimator does not have a closed~form solution, so the optimization techniques such as

1) This paper was supported in part by Sookmyung Women's University, 1999.
2) Department of Statistics, Sookmyung Women's University, Seoul 140-742, Korea.



48  Bu-yong Kim

linear programming method has to be employed. Sklar and Armstrong

(1983, 1984) proposed algorithms for the simple linear regression model, while Barrodale and
Phillips(1975) and Abdelmalek(1977) suggested algorithms for the multiple model. Since those
algorithms are based on the simplex method, large amount of computation is required when
the data set has many regressors or observations. This article proposes an algorithm which
employs the linear scaling transformation scheme to reduce the amount of computation. Also
the convergence of the algorithm is proved. Furthermore, the updating and orthogonal
decomposition techniques are considered to improve the computational efficiency and numerical
stability of the proposed algorithm.

2. Proposed Algorithm
It is necessary to take the linear programming approach in order to deal with the linear

equality and inequality constraints. The linear programming problem for the Chebyshev
estimation with linear constraints is formulated as follows

mil;g}gz.e c'E RQ: ={A& =a: £ unrestricted }, 21
where
Op 'E X. __X: Gl _ G’ _ y
c= , &= , A= ; 2= JI’ '
1 A £ £ 0, 0 u

and 0,=(0, .0 R, 0,=(0,-,0 R, £=(1,-,1)eR" F is a p-vector of

the estimate, and A(=() denotes the value of the maximum absolute residual that is to be
minimized.

The problem (2.1) may be readily solved by any variants of simplex method. However,
since the constraint matrix is of large dimension especially when the number of regressors is
large, it requires a great deal of computation to obtain solution by the simplex-type
algorithms. In order to deal with this computational inefficiency problem, a linear scaling
transformation scheme can be employed at each iteration. Advantages of this scheme has been
shown by Sherali, Skarpness, and Kim(1983). To adapt the scheme, the dual problem
corresponding to the primal problem is constructed as a canonical form,

merimie g'f, Q; = (£20: Af=c),

where teR¥***® denotes the dual variable. The polytope £; is called the feasible region. If
&2, is nonempty, then the problem is feasible. This scheme starts with an initial feasible

solution, which in practice can be obtained by adding one artificial variable( ) and assigning
big m to the corresponding cost vector of the new variable as follows,

T by, 2, =(7=20: Br=c}, (2:2)
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where bz[;; ] yz[f’:], and B=[A:c¢c—A~# ] Since the value m vanishes at the

optimum if the original problem is feasible, a solution of the enlarged problem 1s also a
solution of the original problem. Clearly 2(xn-+ g)-+1 dimensional vector of all ones can be
the initial feasible solution.

The algorithm starts with a given feasible solution 7=/(7,, ", 7w >0, m=2(n+g +1.

At every iteration, it employs the linear scaling transformation which yields the following
change of variables

y=Dz, D=diag{ »,",7m}.

Under this transformation, the problem (2.2) is reformulated in the new z coordinates,

maximize b'Dl", 2, = { r=0: BDr= C} . (2.3)

ref,

In this transformed space, the feasible solution 7y is mapped to 7= £, and the

projection p of the gradient of the objective function in terms of 7 coordinates onto the null

space of BD can be described as
p= {I—- DB’ (BD’B’)"'BD} Db. (2.4)

Since X is assumed to be of full column rank, B is of full row rank. Hence BD?B’ is
nonsingular since 7> 0. A step length 7 is taken from the current iterate = D_Iy =
along the projected gradient direction p to achieve the maximum increase of the objective

function. Thereafter, the r solution is mapped back into the 7 space via y=Dr and
d=Dp, resulting in a new 7 solution with an improved objective function value. This

amounts to taking a step along d, yielding the new iterate such as

Tnew — Yold +77d. (2.5)

The step length # should be chosen so that the feasibility of new point 7qew iS maintained,

p=20x, 1l/x= n;ixlimun; { —di/7:1 >0, 0<&1. (2.6)

The feasibility of ¥new is proved by Lemma 1. The algorithm consists mainly of generating a
sequence of points  7¢gy, Y1y, T, Yk

It is proved by Theorem 1 that if p=0 for some >0, then any feasible solution is

optimal, and if p=0 and p+0 for some 7, then the problem is unbounded. Note that the

algorithm terminates since the latter condition does not occur under the specified assumptions
on (1.1). So the algorithm continues until the following termination criterion is satisfied.
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| ol w<w, for small enough >0,

where | - || » denotes the L.o-norm. It can be easily verified by Theorem 2 that this

criterion works well.

It follows from (2.4) that D& is in the orthogonal complement of the null space of BD if

p= 0. There exists a vector & such that

&'BD=b'D 2.7

since the orthogonal complement of the null space of a matrix is the row space of that
matrix. Furthermore, & 1s the vector of primal variables corresponding to the constraint

BDr= ¢ of the problem (2.3). And the scaling leaves the primal with respect to the problem

(2.2) unchanged. Since BD?B’ is nonsingular from the assumption, (2.7) can be rewritten as
£=(BD*B’) "'BD*b.

Therefore, current estimate rE consists of the first p entries of the vector & The steps of
proposed algorithm are described in detail as follows.

[ Algorithm : CHEBCON]

Initialization : Set the iteration counter k=0, and let 7¢»=(1,...,1)" be the initial

feasible solution. Choose & =[0.97, 0.99].

Step 1 @ Given y¢p, define Dep=diag{ 7, ..., 7, ) . Compute the projected
gradient p (s, and the direction of motion d g,
pw= { I= DB (BD: 3B ) 'BD¢sy } Db, dipy=Dipybcns-

Step 2 If | pew |l » < @ for some chosen tolerance w>(), then go to Step 5.

Step 3 . Determine the step length 7¢p: 7w =0x, 1/x= n::ixllmur:: { —dpilrimi} 0.

Step 4 : Set the new iterate; Y¢p+1y= Y+ Wpd¢py. Increment % by one and return to
Step 1.

Step 5 : Compute the primal solution; &= (BDZ,B’) 'BD%, b, pick the first p entries of

the vector & as the Chebyshev estimate 79‘ and stop.
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3. Convergence of the Proposed Algorithm

The convergence of the algorithm is proved under an additional assumption that the problem
is bounded and feasible. Noting (2.4) and (2.5), we see that in order to prove the convergence

of the algorithm, we need to verify that { p¢»} — 0, and that any convergent

subsequence indexed by K, { 7¢s } x — 7  generated by the algorithm satisfies y"> 0.

[Lemma 1] It is satisfied that y(pn<2,, 2,= { y=0: By=c} in the steps of the
algorithm.

[Proof] The initial feasible solution is (g =(1, ...,1)" € L2,. Suppose that 7 <2, then

By 1y =B(rw+ 2D b )
=Byt 1w { BD%/» b_BD%mB'(BD%»B’)HlBD%mb }
= C
Also it is clear from (2.6) that 7¢g+1y2 0. Those imply that ¥ z+1y € £2,, hence each iterate

¥ ¢4 18 the feasible solution.
[Lemma 2] The duality holds between the primal and dual problems.

[Proof] Since, from Lemma 1, the iterate 7(; is feasible, the relationship

E’A _l.'z _‘E'B_Tu»: E'C

holds for any primal and dual feasible solutions &, ? and _yw respectively. Also, it
follows from the constraints of the primal that

cE=TAE2¢a

Therefore, the weak duality holds. On the other hand, let £" and 7" be the primal and
dual optimal solutions, respectively. Then

b’ 7’*: b'DUa) £
= E"BDj £

’ *

from (2.7). Thus, the strong duality holds.

[Theorem 1] If p =0, then 74 is optimal. Otherwise, assume that p¢,+0 for all

k. Then the sequence { & 74 } converges.
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[Proof]l Let p¢p=0, then & B= b’ from (2.7). Suppose =z is any feasible point. Then
b'z= E Bz= £ c. It is clear that the objective function & z is constant on &2, since
£’ ¢ does not depend on z, and hence ¥ is optimal. However, if P+ 0, then we need

to show that the sequence { & y(p } is strictly increasing. We can rewrite the definition

of d as follows

d=D*b—D*B’'(BD’R’)"'BD*b
and
b— D~ %d= B’ (BD*B’) 'BD’». (3.1
From the feasibility in Lemma 1, we can construct the following equation,
b’DzB'(B'DZB) mlB( Yer+r1> ™ 7<k>) =0 (3.2)
It follows from (3.1) and (3.2) that

(b—D7%d) (7r+1>— Yw) = 0.
Therefore,

Aipn=b"(Tar— 7)) =d D (Yt — Tw)
=D D (3.3)
>0

since 7¢p>0 and P(p*0. It is clear that the sequence { b y(s } is strictly increasing.
Thus, the sequence converges since it is bounded from above by weak duality.

[Theorem 2] The sequence 7., generated by the algorithm converges.

[Proof] The difference of the objective functions between the k~th and (k4 1)-th iterations
is described as

A=l Dl 5. (3.4)

Since, from Theorem 1, the sequence { b y(s } converges, its difference sequence (3.4)
tends to zero, that is,

. 2
%Ll'gla ks " P(k) " 2 0

Therefore, | p¢s | » is to converge to zero. Finally, since 7., belongs to the compact set
Q., there exists a convergent subsequence { ¥¢s } x—7 . For any such subsequence, we
have 7*>0 since the step length 7 is chosen so that this condition should be met.

Consequently, the sequence ¥, converges and the proof is complete.
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4. Computational Aspects

In order to improve the algorithm with respect to the computational efficiency, one may
update the projection Pz at each iteration since the computational effort in the algorithm is
dominated by the computation of P, In particular, the inverse of matrx BD%»B'. The
only quantity that changes from iteration to iteration is the diagonal elements of D¢g. So

updating procedure can be employed to compute the matrix (BD?,41,B") 7",

(BD%441,B") "'= (BD},B") '—(BD},B") 'Bg Zgs
x { I+ Bo(BD»B') 'Bg'Zee ) T'Bo(BDwB) Y,

where Z=U-V, U=diag{ 7u+p,}, V=diag{ 7’4, }, and G is the index set
of the nonnull rows in Z.

On the other hand, the numerical instability problem may well be dealt with by the
orthogonal decomposition approach. It turns out that the computation of p¢. is equivalent to
computing the residuals of the weighted least squares problem,

9 = e (,min D¢y b= DB I,
p<k>=D<k)b_D<k>B’Ib.

There are several methods for computing the vector .. One of them is to implement the
orthogonal decomposition
T

0

Ci
) Q—D(k)bz e »
Cy

QD B’ =

where € is orthogonal matrix and 75 is upper trangular. Then #¢, may simply be

computed as

0
Pw=@

Ca

5. Concluding Remarks

The proposed algorithm can deal with any types of constraints in the Chebyshev estimation
of the multiple regression model. By employving the linear scaling transformation scheme, the
algorithm improves computational efficiency when the data set is quite large. Furthermore, it
suggests the orthogonal decomposition technique to cope with numerical instability problem
that may occur at the iterations.
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