• Title/Summary/Keyword: nucleotide metabolism

Search Result 111, Processing Time 0.019 seconds

The Anti-obesity Effects of Bangpungtongseong-san and Daesiho-tang: A Study Protocol of Randomized, Double-blinded Clinical Trial (방풍통성산 및 대시호탕의 항비만효과 분석: 단일기관 무작위배정 이중맹검 임상시험 프로토콜)

  • Oh, Jihong;Shim, Hyeyoon;Cha, Jiyun;Kim, Ho Seok;Kim, Min Ji;Ahn, Eun Kyung;Lee, Myeong-Jong;Lee, Jun-Hwan;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • Objectives: The aim of this study is to evaluate the effects of Bangpungtongseong-san (Fangfengtongsheng-san, BTS) and Daesiho-tang (Dachaihu-tang, DST) on weight loss and improvement in lipid metabolism and glucose metabolism. Furthermore, we intend to develop a prediction model for drug effects through the analysis of the single nucleotide polymorphism (SNP), gut-microbiota, and the expression of immune-related biomarkers. Methods: This study is a single-center, randomized, double-blind, parallel-design clinical trial. One hundred twenty-eight participants will be assigned to the BTS group (n=64) and DST group (n=64). Both groups will be administered 4 g medication three times a day for up to 2 weeks. The primary outcomes is weight loss. The secondary outcomes include bioelectrical impedance analysis, waist circumstance, body mass index, total cholesterol, high-density lipoprotein, triglyceride, insulin resistance. The exploratory outcomes include 3-day dietary recall, food frequency questionnaire, quality of life questionnaire, gut microbiota analysis, immune biomarkers analysis, and SNP analysis. Assessment will be made at baseline and at week 4, 8, and 12. Conclusions: This protocol will be implemented by approval of the Institutional Review Board of Dongguk University. The results of this trial will provide a systematic evidence for the treatment of obesity and enable more precise herbal medicine prescriptions.

Interethnic Variations of CYP2C19 Genetic Polymorphism

  • Tassaneeyakul, Wongwiwat;Tassaneeyakul, Wichittra
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.145-155
    • /
    • 2001
  • Cytochrome P4502C19 (CYP2C19) is one of human polymorphic xenobiotic-metabolizing enzymes. The enzyme has been reported to catalyze more than 70 substrates, involving more than 100 reactions. These include several classes of therapeutic agents (e.g. anti-microbial. cardiovascular, psycho-active, etc.), sex hormones and insecticides. Associations of the CYP2C19 genotype/phenotype with individual differences in drug efficacy (e.g. diazepam, omeprazole, proguanil) and toxicity (e.g. mephenytoin, barbiturates) have been documented by many investigators. At least 11 allelic variants of CYP2C19 gene were reported to date. Most of the mutant alleles found in the poor metabolizer (PM) led to the production of truncated and/or inactive proteins. Except for the exon 6, single-nucleotide mutations were reported in all nine exons of the gene. Genetic polymorphism of CYP2C19 shows marked interethnic variation with the population frequencies of PM phenotype ranging from 1∼2% up to more than 50%. The prevalence of CYP2C19 PM tends to be higher in Asian and certain Pacific Islanders than other race or ethnic specificity. Genotyping results of CYP2C19 also revealed that there are different proportions of individual mutant alleles among ethnic populations. This may, in part, explains the interethnic difference in the metabolism of certain drugs (i.e. diazepam), though they were from the same CYP2C19 phenotype. Recently, our research group has studied the genotype and phenotype of CYP2C19 and found that the PM frequency (7∼8%) in Thais is lower than other Asian populations. Molecular and clinical impacts of this finding warrant to further investigation.

  • PDF

Molecular Characterization and Chromosomal Mapping of the Porcine AMP-activated Protein Kinase ${\alpha}2$ (PRKAA2) Gene

  • Lee, Hae-Young;Choi, Bong-Hwan;Lee, Jung-Sim;Jang, Gul-Won;Lee, Kyung-Tai;Chung, Ho-Young;Jeon, Jin-Tea;Cho, Byung-Wook;Lee, Jun-Heon;Kim, Tae-Hun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.615-621
    • /
    • 2007
  • AMP-activated protein kinase alpha 2 (PRKAA2) plays a key role in regulation of fatty acid and cholesterol metabolism. This study investigated the porcine PRKAA2 gene as a positional candidate for intramuscular fat and backfat thickness traits in pig chromosome 6. A partial fragment of the porcine PRKAA2 gene, amplified by PCR, contained a putative intron 3 including a part of exon 3 and 4, comparable with that of human PRKAA2 gene. Within the fragment, several single nucleotide polymorphisms were identified using multiple sequence alignments. Of these, TaqI restriction enzyme polymorphism was used for genotyping various pig breeds including Korean reference family. Using linkage and physical mapping, the porcine PRKAA2 gene was mapped in the region between microsatellite markers SW1881 and SW1680 on chromosome 6. Allele frequencies were quite different among pig breeds. The full length cDNA of the porcine PRKAA2 (2,145 bp) obtained by RACE containing 1,656 bp open reading frame of deduced 552 amino acids, had sequence identities with PRKAA2 of human (98.2%), rat (97.8%), and mouse (97.5%). These results suggested that the porcine PRKAA2 is a positional candidate gene for fat deposition trait at near telomeric region of the long arm of SSC 6.

Identification of Candidate Genes Associated with Beef Marbling Using QTL and Pathway Analysis in Hanwoo (Korean Cattle)

  • Park, Hye-Sun;Seo, Seong-Won;Cho, Yong-Min;Oh, Sung-Jong;Seong, Hwan-Hoo;Lee, Seung-Hwan;Lim, Da-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.613-620
    • /
    • 2012
  • Marbling from intramuscular fat is an important trait of meat quality and has an economic benefit for the beef industry. Quantitative trait loci (QTL) fine mapping was performed to identify the marbling trait in 266 Hanwoo steers using a 10K single nucleotide polymorphism panel with the combined linkage and linkage disequilibrium method. As a result, we found nine putative QTL regions for marbling: three on BTA6, two on BTA17, two on BTA22, and two on BTA29. We detected candidate genes for marbling within 1 cM of either side of the putative QTL regions. Additionally, to understand the functions of these candidate genes at the molecular level, we conducted a functional categorization using gene ontology and pathway analyses for those genes involved in lipid metabolism or fat deposition. In these putative QTL regions, we found 95 candidate genes for marbling. Using these candidate genes, we found five genes that had a direct interaction with the candidate genes. We also found SCARB1 as a putative candidate gene for marbling that involves fat deposition related to cholesterol transport.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

Association of gastric cancer with cytochrome P450 2C19 single-nucleotide polymorphisms in Koreans

  • Kim, Hyun-Ju;Park, Hye-Jung;Lee, Sang-Gyu;Lee, Hye-Suk;Park, Won-Cheol;Kim, Jeong-Joong;Oh, Gyung-Jae;Kim, Yun-Kyung
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.357-362
    • /
    • 2007
  • Cytochrome P450 2C19 (CYP2C19) is a clinically important enzyme involved in the metabolism of therapeutic drugs, including (S)-mephenytoin, omeprazole, proguanil, and diazepam. Individuals are characterized as either extensive metabolizers (EM) or poor metabolizers (PM) on the basis of CYP2C19 enzyme activity. The PM phenotype occurs in 2-5% of Caucasians, but in 18-23% of Asians. To clarify the association between CYP2C19 polymorphisms and gastric cancer in Koreans, we investigated CYP2C19 genotypes ($CYP2C19^*1,\;{^*2},\;and\;^*3$) in 109 patients with gastric cancer and 211 controls. Normal ($CYP2C19^*1$) and defective alleles were detected with polymerase chain reaction/restriction enzyme analysis. CYP2C19 has three hereditary genotypes: homozygous EM, with high enzymatic activity; heterozygous EM, with moderate enzymatic activity; and PM, with no enzyme activity. We found that CYP2C19 heterozygous EM is more closely associated with gastric cancer than is homozygous EM. Because the CYP2C19 genotype varies in Koreans, a genotyping test is desirable to prevent gastropathy recurrence in patients before their doses of omeprazole are reduced during maintenance therapy.

Detection of copy number variation and selection signatures on the X chromosome in Chinese indigenous sheep with different types of tail

  • Zhu, Caiye;Li, Mingna;Qin, Shizhen;Zhao, Fuping;Fang, Suli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1378-1386
    • /
    • 2020
  • Objective: Chinese indigenous sheep breeds can be classified into the following three categories by their tail morphology: fat-tailed, fat-rumped and thin-tailed sheep. The typical sheep breeds corresponding to fat-tailed, fat-rumped, and thin-tailed sheep are large-tailed Han, Altay, and Tibetan sheep, respectively. Detection of copy number variation (CNV) and selection signatures provides information on the genetic mechanisms underlying the phenotypic differences of the different sheep types. Methods: In this study, PennCNV software and F-statistics (FST) were implemented to detect CNV and selection signatures, respectively, on the X chromosome in three Chinese indigenous sheep breeds using ovine high-density 600K single nucleotide polymorphism arrays. Results: In large-tailed Han, Altay, and Tibetan sheep, respectively, a total of six, four and 22 CNV regions (CNVRs) with lengths of 1.23, 0.93, and 7.02 Mb were identified on the X chromosome. In addition, 49, 34, and 55 candidate selection regions with respective lengths of 27.49, 16.47, and 25.42 Mb were identified in large-tailed Han, Altay, and Tibetan sheep, respectively. The bioinformatics analysis results indicated several genes in these regions were associated with fat, including dehydrogenase/reductase X-linked, calcium voltage-gated channel subunit alpha1 F, and patatin like phospholipase domain containing 4. In addition, three other genes were identified from this analysis: the family with sequence similarity 58 member A gene was associated with energy metabolism, the serine/arginine-rich protein specific kinase 3 gene was associated with skeletal muscle development, and the interleukin 2 receptor subunit gamma gene was associated with the immune system. Conclusion: The results of this study indicated CNVRs and selection regions on the X chromosome of Chinese indigenous sheep contained several genes associated with various heritable traits.

Association Between Polymorphisms of Dihydrofolate Reductase and Gamma Glutamyl Hydrolase Genes and Toxicity of High Dose Methotrexate in Children with Acute Lymphoblastic Leukemia

  • Koomdee, Napatrupron;Hongeng, Suradej;Apibal, Suntaree;Pakakasama, Samart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3461-3464
    • /
    • 2012
  • Methotrexate (MTX) is an important drug for the treatment of childhood acute lymphoblastic leukemia (ALL). However, related toxicity occurs in many organs which may cause interruption of treatment, morbidity, and mortality. Single nucleotide polymorphisms (SNPs) of dihydrofolate reductase (DHFR) and gamma glutamyl hydrolase (GGH) are known to alter their enzymatic activity and thus affect the metabolism of MTX and influence the effectiveness. Therefore, we hypothesized that genetic variations of DHFR and GGH genes may influence the risk of toxicity after high dose MTX. The study population comprised of 105 children with ALL who were treated according to the modified St Jude Total XV protocol. The patients received 2.5 or $5g/m^2$ of MTX for 5 doses during the consolidation phase. Genotyping of DHFR 829C>T and GGH-401C>T was performed using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The GGH-401CT and TT genotypes were associated with increased risk of leukopenia and thrombocytopenia after high dose MTX (OR 2.97, 95%CI; 1.24-7.13 and OR 4.02, 95%CI; 1.58-10.26). DHFR 829C>T was not associated with toxicity. In conclusion, the GGH-401CT and TT genotypes were found to increase the risk of severe leukopenia and thrombocytopenia after exposure to high dose MTX for childhood ALL therapy.

Molecular Characterization and Expression of LDHA and LDHB mRNA in Testes of Japanese Quail (Coturnix japonica)

  • Singh, R.P.;Sastry, K.V.H.;Pandey, N.K.;Shit, N.G.;Agarwal, R.;Singh, R.;Sharma, S.K.;Saxena, V.K.;Jagmohan, Jagmohan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1060-1068
    • /
    • 2011
  • The LDH isozymes are key catalysts in the glycolytic pathway of energy metabolism. It is well known that the distribution of the LDH isozymes vary in accordance with the metabolic requirements of different tissues. The substrates required for energy production change noticeably at successive stages of testes development suggesting a significant flexibility in the expression of glycolytic enzymes. Therefore, expression of LHDA and LDHB mRNAs was examined in adult and prepubertal quail testis. The mRNA of both LDHA and LDHB were expressed and no significant difference was observed in prepubertal testes. The mRNA levels of LDHB significantly increased during testicular development. In the adult testis, LDHA mRNA was not expressed. Expression studies revealed the presence of different LDH isozymes during testicular development. In contrast, electrophoresis of both testicular samples revealed only single band at a position indicative of an extreme type of LDH isozyme in quail testes. Furthermore, nucleotide and amino acid sequence analysis revealed significant similarity to chicken, duck and rock pigeon. These sequence results confirmed the similarity of LDHA and LDHB subunit protein in different avian species.

Comparison of transcriptome analysis between red flash peach cultivar and white flash peach cultivar using next generation sequencing (Next generation sequencing 방법을 이용한 적육계 복숭아와 백육계 복숭아의 전사체 분석)

  • Kim, Se Hee;Nam, Eun Young;Cho, Kang-Hee;Shin, Il Sheob;Kim, Hyun Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • Differences of gene expression between red flash peach cultivar and white flash peach cultivar were investigated by Nest-generation sequencing (NGS). EST from the red flash peach cultivar and white flash peach cultivar were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, temperature stress, ethylene signal pathway were significantly higher in white flash peach cultivar than in red flash peach cultivar. On the other hand, the up-regulation of proteins involved in anthocyanin and flavonol biosynthesis and protein degradation and sorbitol metabolism were observed in red flash peach cultivar. Chalcone synthase was preferentially expressed in the red flesh peach cultivar, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. Anthocyanin pathway related genes CHS, F3H, DFR, LDOX, UFGT differentially expressed between red flash peach cultivar and white flash peach cultivar. These results suggest that red flash peach cultivar and white flash peach cultivar have different anthocyanin biosynthesis regulatory mechanisms.