Browse > Article
http://dx.doi.org/10.5713/ajas.2007.615

Molecular Characterization and Chromosomal Mapping of the Porcine AMP-activated Protein Kinase ${\alpha}2$ (PRKAA2) Gene  

Lee, Hae-Young (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
Choi, Bong-Hwan (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
Lee, Jung-Sim (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
Jang, Gul-Won (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
Lee, Kyung-Tai (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
Chung, Ho-Young (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
Jeon, Jin-Tea (Gyeongsang National University)
Cho, Byung-Wook (Department of Animal Science, Busan National University)
Lee, Jun-Heon (Research Center for Transgenic Cloned Pigs, Division of Animal science and resources, Chungnam National University)
Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.5, 2007 , pp. 615-621 More about this Journal
Abstract
AMP-activated protein kinase alpha 2 (PRKAA2) plays a key role in regulation of fatty acid and cholesterol metabolism. This study investigated the porcine PRKAA2 gene as a positional candidate for intramuscular fat and backfat thickness traits in pig chromosome 6. A partial fragment of the porcine PRKAA2 gene, amplified by PCR, contained a putative intron 3 including a part of exon 3 and 4, comparable with that of human PRKAA2 gene. Within the fragment, several single nucleotide polymorphisms were identified using multiple sequence alignments. Of these, TaqI restriction enzyme polymorphism was used for genotyping various pig breeds including Korean reference family. Using linkage and physical mapping, the porcine PRKAA2 gene was mapped in the region between microsatellite markers SW1881 and SW1680 on chromosome 6. Allele frequencies were quite different among pig breeds. The full length cDNA of the porcine PRKAA2 (2,145 bp) obtained by RACE containing 1,656 bp open reading frame of deduced 552 amino acids, had sequence identities with PRKAA2 of human (98.2%), rat (97.8%), and mouse (97.5%). These results suggested that the porcine PRKAA2 is a positional candidate gene for fat deposition trait at near telomeric region of the long arm of SSC 6.
Keywords
PRKAA2; Mapping; Candidate Gene; Pig;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Friedman, J. M. and J. Halaas. 1998. Leptin and the regulation of body weight in mammals. Nature 395:763-770.   DOI   ScienceOn
2 Gao G., J. Widmer, D. Stapleton, T. Teh, T. Cox, B. E. Kemp and L. A. Witters. 1995. Catalytic subunits of the porcine and rat 5'- AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochim. Biophys Acta. 1266:73-82.   DOI   ScienceOn
3 Goureau, A., M. Yerle, A. Schmitz, J. Riquet, D. Milan, P. Pinton, G. Frelat and J. Gellin. 1996. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genom. 36:252-262.   DOI   ScienceOn
4 Kim, K. S., N. Larsen, T. Short, G. Plastow and M. F. Rothschild. 2000. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome. 11:131-135.   DOI   ScienceOn
5 Le Roy, P., J. M. Elsen, J. C. Caritez, A. Talmant, H. Juin, P. Sellier, and G. Monin. 2000. Comparison between the three porcine RN genotypes for growth, carcass composition and meat quality traits. Genet. Sel. Evol. 32:165-186.   DOI   ScienceOn
6 Milan, D., J. T. Jeon, C. Looft, V. Amarger, A. Robic, M. Thelander, C. Rogel-Gaillard, S. Paul, N. Iannuccelli, L. Rask, H. Ronne, K. Lundstrom, N. Reinsch, J. Gellin, E. Kalm, P. L. Roy, P. Chardon and L. Andersson. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Sci. 288:1248-1251   DOI   ScienceOn
7 Paszek, A. A., P. J. Wilkie, G. H. Flickinger, G. A. Rohrer, L. J. Alexander, C. W. Beattie and L. B. Schook. 1999. Interval mapping of growth in divergent swine cross. Mamm. Genome. 10:117-122.   DOI   ScienceOn
8 Rohrer, G. A. and J. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine I. Fat deposition traits. J. Anim. Sci. 76:2247-2254.   DOI
9 Viollet, B., F. Andreelli, B. Jorgensent, C. Perrin, D. Flamez, J. Mu, J. F. P. Wojtaszewski, F. C. Schuit, M. Birnbaum, E. Richter, R. Burcelin and S. Vaulont. 2003. Physiological role of AMPactivated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society Transactions 31:216-219.   DOI   ScienceOn
10 Beri, R. K., A. E. Marley, C. G. See, W. F. Sopwith, K. Aguan, D. Carling, J. Scott and F. Carey. 1994. Molecular cloning, expression and chromosomal localisation of human AMPactivated protein kinase. FEBS Lett 356:117-121.   DOI   ScienceOn
11 Bidanel, J. P., D. Milan, N. Iannuccelli, Y. Amigues, M. Y. Boscher, F. Bourgeois, J. C. Caritez, J. Gruand, P. L. Roy, H. Lagant, R. Quintanilla, C. Renard, J. Gellin, L. Ollivier and C. Chevalet. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-309.   DOI   ScienceOn
12 Minokoshi, Y., Y. B. Kim, O. D. Peroni, L. G. D. Fryer, D. Carling and B. B. Kahn. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339-343.   DOI   ScienceOn
13 Carling, D., K. Aguan, A. Woods, A. J. Verhoeven, R. K. Beri, C. H. Brennan, C. Sidebottom, M. D. Davison and J. Scott. 1994. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 269:11442-11448.
14 Green, P., K. Falls and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington Univ. School of Medicine, St. Louis, MO.
15 Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm, I. Hansson, J. Hakansson and K. Lundstrom. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Sci. 263:1771-1774.   DOI
16 Hardie, D. G. and Hawley SA. 2001. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays. 23:1112-1119.   DOI   ScienceOn
17 Van Laere, A. S., M. Nguyen, M. Braunschweig, C. Nezer, C. Collette, L. Moreau, A. L. Archibald, C. S. Haley, N. Buys, M. Tally, G. Andersson, M. Georges and L. Andersson. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832-836.   DOI   ScienceOn
18 Yerle, M., G. Echard, A. Robic, A. Mairal, C. Dubut-Fontana, J. Riquet, P. Pinton, D. Milan, Y. Lahbib-Mansais and J. Gellin. 1996. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet. Cell Genet. 73:194-202.   DOI
19 Rothschild, M. F. and G. S. Plastow. 1999. Advances in pig genomics and industry applications. AgBiotechNet 10:1-8.
20 Yerle, M., P. Pinton, A. Robic, A. Alfonso, Y. Palvadaeu, C. Delcro, R. Hawken, L. Alexander, C. Beauti, L. Schook, D. Milan and J. Gellin. 1998. Construction of whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet. Cell Genet. 82:182-188.   DOI   ScienceOn
21 De Koning, D. J., L. L. G. Janss, A. P. Rattink, P. A. M. van Oers, B. J. de Vries, M. A. M. Groenen, J. J. der Poel, P. N. de Groot, E. W. Brascamp and van Arendonk, J. A. M. 1999. Detection of quantitative trait loci for back fat thickness and intramuscular fat content in Pigs (Sus scrofa). Genet. 152:1679-1690.
22 Hawken, R. J., J. Murtaugh, G. H. Flickinger, M. Yerle, A. Robic, D. Milan, J. Gellin, C. W. Beattie, L. B. Schook and L. J. Alexander. 1999. A first-generation porcine whole genome radiation hybrid map. Mamm. Genome. 10:824-830.   DOI   ScienceOn
23 McKay, S. D., S. N. White, S. R. Kata, R. Loan and J. E. Womack. 2003. The bovine 5' AMPK gene family: mapping and single nucleotide polymorphism detection. Mamm. Genome. 14:853-858.   DOI   ScienceOn
24 Grindflek, E., J. Szyda, Z. Liu and S. Lien. 2001. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome. 12:299-304.   DOI   ScienceOn
25 Aguan, K., J. Scott, C. G. See and N. H. Sarkar. 1994. Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: a major regulator of lipid metabolism in mammals. Gene. 149:345-350.   DOI   ScienceOn
26 De Koning, D. J., A. P. Rattink, B. Harlizius, M. A. M. Groenen, E. W. Brascamp and J. A. M. van Arendonk. 2000. Detection and characterization of quantitative trait loci for growth and reproduction traits in pigs. Livestock Production Science 72: 185-198.
27 Gerbens, F., D. J. de Koning, F. L. Harders, T. H. Meuwissen, L. L. Janss, M. A. Groenen, J. H. Veerkamp, J. A. Van Arendonk and M. F. te Pas. 2000. The effect of adipocyte and heart fatty acidbinding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559.   DOI
28 Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K. Lundstrom, M. Moller, M., and Andersson, L.1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics. 149:1069-1080.
29 Malek, M., J. C. M. Dekkers, H. K. Lee, T. Baas and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm. Genome. 12:630-636.   DOI   ScienceOn
30 Muoio, D. M., G. L. Dohm, F. T. Fiedorek, Jr., E. B. Tapscott, R. A. Coleman and G. L. Dohn. 1997. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46:1360-1363.   DOI   ScienceOn
31 Ovilo, C., M. Perez-Encisom, C. Barragan, A. Clop, C. Rodriguez, M. A. Oliver, M. A. Toro and J. L. Noguera. 2000. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm Genome 11:344-346.   DOI   ScienceOn
32 Hardie, D. G., D. Carling and M. Carlson. 1998. The AMPactivated/ SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell. Annu. Rev. Biochem. 67:821-855.   DOI   ScienceOn
33 Fujii, J., K. Otsu, F. Zorzto, S. de Leon, V. K. Khanna, V. K., Weiler, J. E., P. J. O'Brien and D. H. MacLennan. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Sci. 253:448-451.   DOI
34 Gerbens, F., A. J. van Erp, F. L. Harders, F. L., Verburg, F. J., Meuwissen, T. H., Veerkamp, J. H., and te Pas, M. F. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77:846-852.   DOI