• Title/Summary/Keyword: nuclear translocation

Search Result 444, Processing Time 0.025 seconds

Hepatitis Delta Virus Large Antigen Sensitizes to TNF-α-Induced NF-κB Signaling

  • Park, Chul-Yong;Oh, Sang-Heun;Kang, Sang Min;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Hepatitis delta virus (HDV) infection causes fulminant hepatitis and liver cirrhosis. To elucidate the molecular mechanism of HDV pathogenesis, we examined the effects of HDV viral proteins, the small hepatitis delta antigen (SHDAg) and the large hepatitis delta antigen (LHDAg), on $NF-{\kappa}B$ signaling pathway. In this study, we demonstrated that $TNF-{\alpha}-induced$ $NF-{\kappa}B$ transcriptional activation was increased by LHDAg but not by SHDAg in both HEK293 and Huh7 cells. Furthermore, LHDAg promoted TRAF2-induced $NF-{\kappa}B$ activation. Using coimmunoprecipitation assays, we demonstrated that both SHDAg and LHDAg interacted with TRAF2 protein. We showed that isoprenylation of LHDAg was not required for the increase of $NF-{\kappa}B$ activity. We further showed that only LHDAg but not SHDAg increased the $TNF-{\alpha}-mediated$ nuclear translocation of p65. This was accomplished by activation of $I{\kappa}B_{\alpha}$ degradation by LHDAg. Finally, we demonstrated that LHDAg augmented the COX-2 expression level in Huh7 cells. These data suggest that LHDAg modulates $NF-{\kappa}B$ signaling pathway and may contribute to HDV pathogenesis.

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

  • Jung, Ji-Sun;Lee, Sang-Yoon;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.

Dendrobium moniliforme Stem Extract Inhibits Lipoteichoic Acid-Induced Inflammatory Responses by Upregulation of Heme Oxygenase-1

  • Lee, Young Ji;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1310-1317
    • /
    • 2018
  • The stems of Dendrobium moniliforme have been used in traditional herbal medicine for the treatment of fever and lack of body fluid in Korea. In this study, we investigated anti-inflammatory effects of the aqueous extract of D. moniliforme stems (DM) in response to lipoteichoic acid (LTA), a major constituent of the cell wall of Gram-positive bacteria. DM inhibited LTA-induced expression of a pro-inflammatory mediator inducible nitric oxide synthase (iNOS) in the murine macrophages. And DM induced expression of heme oxygenase-1 (HO-1) at the transcriptional level. Conversely, the knockdown of HO-1 expression by siRNA markedly reversed the inhibitory effects of DM on LTA-induced iNOS expression. We also demonstrated that nuclear translocation of Nrf2 was increased following treatment with DM. In addition, DM-mediated Nrf2 activation and HO-1 expression were suppressed by PI3K/Akt and p38 inhibitors; treatment with DM also resulted in phosphorylation of Akt and p38. These results suggest that DM inhibits the expression of iNOS in LTA-stimulated macrophages, and that these effects are mediated by the upregulation of HO-1 expression via PI3K/Akt/p38-Nrf2 signaling.

BMI-1026 treatment can induce SAHF formation by activation of Erk1/2

  • Seo, Hyun-Joo;Park, Hye-Jeong;Choi, Hyung-Su;Hwang, So-Yoon;Park, Jeong-Soo;Seong, Yeon-Sun
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.523-528
    • /
    • 2008
  • BMI-1026 is a synthetic aminopyrimidine compound that targets cyclin dependent kinases (cdks) and was initially designed as a potential anticancer drug. Even though it has been well documented that BMI-1026 is a potent cdk inhibitor, little is known about the cellular effects of this compound. In this study, we examined the effects of BMI-1026 treatment on inducing premature senescence and then evaluated the biochemical features of BMI-1026-induced premature senescence. From these experiments we determined that BMI-1026 treatment produced several biochemical features of premature senescence and also stimulated expression of mitogen activated protein kinase (MAPK) family proteins. BMI-1026 treatment caused nuclear translocation of activated Erk1/2 and the formation of senescence associated heterochromatin foci in 5 days. The heterochromatin foci formation was perturbed by inhibition of Erk1/2 activation.

Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages

  • Lee, Jisun;Kim, Sun-Lim;Lee, Seul;Chung, Mi Ja;Park, Yong Il
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.382-387
    • /
    • 2014
  • Corn silk (CS) has long been consumed as a traditional herb in Korea. Maysin is a major flavonoid of CS. The effects of maysin on macrophage activation were evaluated, using the murine macrophage RAW 264.7 cells. Maysin was isolated from CS by methanol extraction, and preparative $C_{18}$ reverse phase column chromatography. Maysin was nontoxic up to $100{\mu}g/ml$, and dose-dependently increased TNF-${\alpha}$ secretion and iNOS production by 11.2- and 4.2-fold, respectively, compared to untreated control. The activation and subsequent nuclear translocation of NF-${\kappa}B$ was substantially enhanced upon treatment with maysin ($1-100{\mu}g/ml$). Maysin also stimulated the phosphorylation of Akt and MAPKs (ERK, JNK). These results indicated that maysin activates macrophages to secrete TNF-${\alpha}$ and induce iNOS expression, via the activation of the Akt, NF-${\kappa}B$ and MAPKs signaling pathways. These results suggest for the first time that maysin can be a new immunomodulator, enhancing the early innate immunity.

Anti-Inflammatory Effect of the Extracts from Abeliophyllum distichum Nakai in LPS-Stimulated RAW264.7 Cells

  • Park, Gwang Hun;Park, Jae Ho;Eo, Hyun Ji;Song, Hun Min;Lee, Man Hyo;Lee, Jeong Rak;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.209-214
    • /
    • 2014
  • In this study, we investigated whether A. distichum decreases the production of inflammatory mediators through downregulation of the NF-${\kappa}B$ and ERK pathway. Our data indicated that A. distichum leaf inhibits the overexpression of iNOS in protein and mRNA levels, and subsequently blocked LPS-mediated NO overproduction in RAW264.7 cells. A. distichum leaf inhibited $I{\kappa}B-{\alpha}$ degradation and p65 nuclear translocation, and subsequently suppressed transcriptional activity of NF-${\kappa}B$ in LPS-stimulated RAW264.7 cells. In addition, A. distichum leaf suppressed LPS-induced ERK1/2 activation by decreasing phosphorylation of ERK1/2. These findings suggest that A. distichum leaf shows anti-inflammatory activities through suppressing ERK-mediated NF-${\kappa}B$ activation in mouse macrophage.

Anti-inflammatory Effect Of Extracts from Cheongmoknosang(Morus alba L.) in Lipopolysaccharide-stimulated Raw Cells (청목노상 (Morus alba L.)추출물에 의한 Lipopolysaccharide로 유도된 Raw 246.7 cell에서 염증 억제효과)

  • Cho, Young-Je;An, Bong-Jeun
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.44-48
    • /
    • 2008
  • With extracts from Cheongmoknosang, anti-inflammatory effect was examined in LPS-stimulated Raw 264.7 cells. LPS (10 ng/ml) treatment increased the production of inflammatory cytokines, $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ but the ethanol extracts from Cheongmoknosang slightly decreased the production of $TNF-{\alpha}$ and also reduced the expression of iNOS and the production of COX-2. It seems that anti-inflammatory effects of ethanol extracts from Cheongmoknosang is partly due to the inhibition of iNOS and COX-2 expression by inhibiting nuclear translocation of $NF-{\kappa}B$ and AP-l in Raw 264.7 cells.

Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

Suppression of Phorbol Ester-Induced NF-kB Activation by Capsaicin in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Chun, Kyung-Soo;Surh, Young-Joon
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.475-479
    • /
    • 2002
  • Capsaicin, a major pungent constituent of red pepper (Capsicum annuum L.) possesses a vast variety of pharmacologic and physiologic activities. Despite its irritant properties, the compound exerts anti-inflammatory and anti-nociceptive effects. Previous studies from this laboratory revealed that capsaicin, when topically applied onto dorsal skin of female ICR mice, strongly attenuated activation of NF-kB and AP-1 induced by the typical tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), which may account for its anti-tumor promoting activity in mouse skin. In the present work, we have found that capsaicin suppresses TPA-stimulated activation of NF-kB through inhibition of $IkB{\alpha}$ degradation and blockade of subsequent nuclear translocation of p65 in human pro myelocytic leukemia HL-60 cells. Methylation of the phenolic hydroxyl group of capsaicin abolished its inhibitory effect on NF-kB DNA binding. Likewise, TPA-induced activation of AP-1 was mitigated by capsaicin treatment.

Anti-inflammatory effect of Arctium minus on LPS-stimulated RAW 264.7 cells

  • Yang, Hye-Ji;Jang, Min-Hye;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.115-115
    • /
    • 2019
  • Arctium minus (AM), commonly known as lesser burdock, is a dried fruit (seed) of Aructium lappa L. that belong to Asteraceae. It has been used traditionally as herbal medicine because of its anti-inflammatory effects, and it has been applied to treat various diseases like allergies, skin aging, hyperlipidemia and urinary stone. In this study, we investigated the inhibitory effects of AM on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pre-treatment of the RAW 264.7 cells with AM considerably inhibited and reduced production of Nitric Oxide (NO) and pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and also shows suppression of nuclear factor-kappa B (NF-${\kappa}B$) translocation. In addition, AM treatment considerably reduced phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. Our results indicate that the AM has potential to inhibit inflammation through suppressing production of inflammatory mediators via both the NF-${\kappa}B$ and MAPK signaling pathway. We therefore suggest that AM might be effective therapeutics for the treatment of various inflammatory diseases.

  • PDF