Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.129

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling  

Jung, Ji-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
Lee, Sang-Yoon (Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
Kim, Dong-Hyun (Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
Kim, Hee-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
Publication Information
Biomolecules & Therapeutics / v.24, no.1, 2016 , pp. 33-39 More about this Journal
Abstract
Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.
Keywords
Astrocytes; Ginsenoside Rh1; Antioxidant enzyme; MAPK-Nrf2 signaling;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alam, J. and Cook, J. L. (2007) How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am. J. Respir. Cell Mol. Biol. 36, 166-174.   DOI
2 Cheng, Y., Shen, L. H. and Zhang, J. T. (2005) Anti-amnestic and antiaging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol. Sin. 26, 143-149.   DOI
3 Dallerac, G., Chever, O. and Rouach, N. (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159.
4 Hou, J., Xue, J., Lee, M., Yu, J. and Sung, C. (2014) Long-term administration of Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. Int. J. Mol. Med. 33, 234-240.   DOI
5 Jaiswal, A. K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Rad. Biol. Med. 36, 1199-1207.   DOI
6 Jung, J. S., Kim, D. H. and Kim, H. S. (2010a) Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFNgamma- stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem. Biophys. Res. Commun. 397, 323- 328.   DOI
7 Jung, J. S., Shin, J. A., Park, E. M., Lee, J. E., Kang, Y. S., Min, S. W., Kim, D. H., Hyun, J. W., Shin, C. Y. and Kim, H. S. (2010b) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide- stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J. Neurochem. 115, 1668-1680.   DOI
8 Jung, J. S., Ahn, J. H., Le, T. K., Kim, D. H. and Kim, H. S. (2013) Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells. Neurochem. Int. 63, 80-86.   DOI
9 Lee, E. J., Ko, H. M., Jeong, Y. H., Park, E. M. and Kim, H. S. (2015a) Beta-lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133.   DOI
10 Lee, J. M. and Johnson, J. A. (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37, 139-143.   DOI
11 Lee, S. Y., Jeong, J. J., Eun, S. H. and Kim, D. H. (2015b) Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induded colitis. Eur. J. Pharmacol. 762, 333-343.   DOI
12 Park, J. S., Park, E. M., Kim, D. H., Jung, K., Jung, J. S., Lee, E. J., Hyun, J. W., Kang, J. L. and Kim H. S. (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209, 40-49.   DOI
13 Li, J., Du, J., Liu, D., Cheng, B., Fang, F., Weng, L., Wang, C. and Ling, C. (2014) Ginsenoside Rh1 potentiates dexamethasone's anti-inflammatory effects for chronic inflammatory disease by reversing dexamethasone-induced resistance. Arthritis Res. Ther. 16, R106.   DOI
14 Niture, S. K., Kaspar, J. W., Shen, J. and Jaiswal, A. K. (2010) Nrf2 signaling and cell survival. Toxicol. App. Pharmacol. 244, 37-42.   DOI
15 Park, E. K., Choo, M. K., Han, M. J. and Kim, D. H. (2004) Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immunol. 133, 113-120   DOI
16 Park, J. S., Jung, J. S., Jeong, Y. H., Hyun, J. W., Le, T. K., Kim, D. H., Choi, E. C. and Kim, H. S. (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J. Neurochem. 119, 909-919.   DOI
17 Park, J. S. and Kim, H. S. (2014) Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinonestimulated rat primary astrocytes. Biochem. Biophys. Res. Commun. 447, 672-677.   DOI
18 Qin, L., Block, M. L., Liu, Y., Bienstock, R. J., Pei, Z., Zhang, W., Wu, X., Wilson, B., Burka, T. and Hong, J. S. (2005) Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 19, 550-557.   DOI
19 Sofroniew, M. V. and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta Neuropathol. 119, 7-35.   DOI
20 Shin, Y. W., Bae, E. A., Kim, S. S., Lee, Y. C., Lee, B. Y. and Kim, D. H. (2006) The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone- induced mouse dermatitis models. Planta Med. 72, 376-378.   DOI
21 Sun, Z., Huang, Z. and Zhang, D. D. (2009) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4:e6588.   DOI
22 Syapin, P. J. (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br. J. Pharmacol. 155, 623-640.
23 Vargas, M. R. and Johnson, J. A. (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev. Mol. Med. 11, e17.   DOI
24 Venugopal, R. and Jaiswal, A. K. (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17, 3145-3156.   DOI
25 Wang, Y. Z., Chen, J., Chu, S. F., Wang, Y. S., Wang, X. Y., Chen, N. H. and Zhang, J. T. (2009) Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1's metabolites ginsenoside Rh1 and protopanaxatriol. J. Pharmacol. Sci. 109, 504-510.   DOI
26 Zhang, M., An, C., Gao, Y., Leak, R. K., Chen, J. and Zhang, F. (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100, 30-47.   DOI
27 Zhu, D., Wu, L. and Li, C. R. (2009) Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J. Cell Biochem. 108, 117-124   DOI
28 Zheng, H., Jeong, Y., Song, J. and Ji, G. E. (2011) Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitislike lesions induced by oxazolone in hairless mice. Int. Immunopharmacol. 11, 511-518.   DOI