• Title/Summary/Keyword: nuclear magnetic resonance (NMR)

Search Result 540, Processing Time 0.023 seconds

Physical Principles of Magnetic Resonance Imaging in Animal (동물에서 자기 공명 영상 진단의 물리적 원리)

  • 김종규
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.75-79
    • /
    • 1999
  • Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of the animal body. MRI is based on the principles of nuclear magnetic resonance (NMR) and started out as a tomographic imaging technique, that is it produced an image of the NMR signal in a thin slice through the animal body. The animal body is primarily fat and water, Fat and water have many hydrogen atoms. Hydrogen nuclei have an NMR signal. For these reasons magnetic resonance imaging primarily images the NMR signal from the hydrogen nuclei. Hydrogen protons, within the body align with the magnetic field. By applying short radio frequency (RF) pulses to a specific anatomical slice, the protons in the slice absorb energy at this resonant frequency causing them to spin perpendicular to the magnetic field. As the protons relax back into alignment with the magnetic field, a signal is received by an RF coil that acts as an antennae. This signal is processed by a computer to produce diagnostic images of the anatomical area of interest.

  • PDF

Stable Isotope Labeling of Proteins in Mammalian Cells

  • Lee, KyungRyun;Lee, Jung Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2020
  • Stable isotope enrichment in proteins is necessary for high-resolution nuclear magnetic resonance (NMR) experiments. Although methods for 13C, 15N and 2H-enrichment in prokaryotic cells are well established, full processing and correct folding of complex protein systems require higher organisms as the expression host. In the present study, we review recent efforts to enrich stable isotopes in mammalian cells for protein NMR studies.

Solid State Dynamic Nuclear Polarization of 1H Nuclear Spins at 0.3 T and 4.2 K

  • Shim, Jeong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.114-118
    • /
    • 2017
  • Here, I report solid state Dynamic Nuclear Polarization (DNP) of $^1H$ nuclear spins at 0.3 T and 4.2 K. The DNP polarizer was developed based on a commercial X-band Electron Spin Resonance (ESR) modified for DNP, in combination with a NMR console and a liquid-Helium cryostat. By detuning magnetic field, DNP spectrum was measured to find the optimal condition. At +3 mT detuned from on-resonance field, $^1H$ NMR signal of 60:40 glycerol/water frozen solution doped with 20 mM perdeuterated-Tempone was amplified 43 times. The $^1H$ spin polarization obtained at 4.2 K is over 3100 times higher than that at 300 K. The width of the DNP spectrum, which is five times broader than ESR spectrum, is inconsistent with solid effect or thermal mixing, and presumably suggests a different DNP mechanism.

Purity assessment using quantitative NMR: establishment of SI traceability in organic analysis

  • Choi, Kihwan
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Quantitative nuclear magnetic resonance (qNMR) has been gaining attention as a purity assessment method. In particular, qNMR is recognized as the primary method to realize the Internal System of Units (SI) in organic analysis. The capability of quantitative analysis is recognized as the beginning of NMR development. NMR signals are proportional to the number of nuclei and qNMR has been used in various fields, such as metabolomics and food and pharmaceutical analysis. However, careful sample preparation and thorough optimization of measurement parameters are required to obtain accurate and reliable results. In this review, quantitative methods used in qNMR are discussed, and the important factors to be considered also introduced. The recent development of qNMR techniques including combination with chromatography and, multidimensional NMR are also presented.

Structural characteristics of [N(CH3)4]2CdCl4 determined by 1H MAS NMR, 13C CP/ MAS NMR, and 14N NMR

  • Lee, Seung Jin;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • The structural geometry of $[N(CH_3)_4]_2CdCl_4$ in a hexagonal phase is studied by $^1H$ MAS NMR, $^{13}C$ CP/MAS NMR, and $^{14}N$ NMR. The changes in the chemical shifts for $^{13}C$ and $^{14}N$ in the hexagonal phase are explained by the structural geometry. In addition, the temperature dependencies of the spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for $^1H$ MAS NMR and $^{13}C$ CP/MAS NMR are measured.

Mini-review on fabrication of nitrogen vacancy center in diamond and its application to NMR

  • Oh, Sangwon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2019
  • Nitrogen-vacancy (NV) is one of the most popular solid-state spin systems for quantum sensing. NV has been used for vector magnetometry with nanometer spatial resolution and sensors for nuclear magnetic resonance (NMR) in samples with small volume, less than 10 pL. Various studies are in progress to make NV a complementary sensor for current NMR technique. Fabricating and improving diamond itself are one of the research topics. This mini-review contains recent develops in diamond fabrication and treatment for higher NV yield. Additionally, we briefly introduce the development status of NV in NMR.

Magnetic Field Standards Using Magnetic Resonance

  • Park, Po Gyu;Kim, Wan-Seop;Joo, Sung Jung;Lee, Hyung Kew
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • The nuclear magnetic resonance (NMR) and atomic magnetic resonance (AMR) plays a fundamental role in achieving a high accuracy of magnetic field measurements. Magnetic field unit (T) was realized based on the shielded proton gyromagnetic ratio (${\gamma}^{\prime}_P$), helium-4 gyromagnetic ratio (${\gamma}_{4He}$) and related techniques. The magnetic field standard system has been disseminated by the NMR magnetometer and electromagnet, a Helmholtz coil system, and AMR magnetometer in the nonmagnetic laboratory. A magnetic field standard below 1 mT has been developed by using Cs and Cs- $^4He$ AMR with automatic compensation of an external magnetic field noise. The standards serve for the calibration of magnetometers and support the test of sensors and materials in the range from $5{\mu}T$ to 2.0 T with (1 to 50) ${\mu}T/T$ uncertainty (k=2).

Overhauser dynamic nuclear polarization for benchtop NMR system using a permanent magnet of 1.56 T

  • Lee, Yeon-seong;Lim, Duk-Young;Shim, Jeong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.81-86
    • /
    • 2019
  • Overhauser dynamic nuclear polarization (O-DNP) has been an efficient method to boost the thermal nuclear polarization in liquids at room temperature. However, O-DNP for a benchtop NMR using a permanent magnet has remained unexplored yet. In this work, we report the development of an O-DNP system adopting a permanent magnet of 1.6 T. Q-band (~43 GHz) high-power amplifier produced 6 W microwave for saturation. Instead of resonator, we used an open-type antenna for the microwave irradiation. For several representative small molecules, we measured the concentration and frequency dependences of the enhancement factor. This work paves the way for the development of a benchtop DNP-NMR system overcoming its disadvantage of low quality signal when using a permanent magnet.

NMR methods in fragment based drug discovery

  • Lim, Jongsoo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.132-136
    • /
    • 2015
  • Nuclear magnetic resonance (NMR) spectroscopy, owing to its ability to provide atomic level information on molecular structure, dynamics and interaction, has become one of the most powerful methods in early drug discovery where hit finding and hit-to-lead generation are mainly pursued. In recent years, drug discovery programs originating from the fragment-based drug discovery (FBDD) strategies have been widely incorporated into academia and industry in which a wide variety of NMR methods become an indispensable arsenal to elucidate the binding of small molecules onto bimolecular targets. In this review, I briefly describe FBDD and introduce NMR methods mainly used in FBDD campaigns of my company. In addition, quality control of fragment library and practical NMR methods in industrial aspect are discussed shortly.