DOI QR코드

DOI QR Code

Stable Isotope Labeling of Proteins in Mammalian Cells

  • Lee, KyungRyun (Department of Chemistry, Seoul National University) ;
  • Lee, Jung Ho (Department of Chemistry, Seoul National University)
  • Received : 2020.09.10
  • Accepted : 2020.09.18
  • Published : 2020.09.20

Abstract

Stable isotope enrichment in proteins is necessary for high-resolution nuclear magnetic resonance (NMR) experiments. Although methods for 13C, 15N and 2H-enrichment in prokaryotic cells are well established, full processing and correct folding of complex protein systems require higher organisms as the expression host. In the present study, we review recent efforts to enrich stable isotopes in mammalian cells for protein NMR studies.

Keywords

References

  1. G. L. Rosano and E. A. Ceccarelli, Front Microbiol. 5, 172 (2014) https://doi.org/10.3389/fmicb.2014.00172
  2. M. Ikura, L. E. Kay and A. Bax, Biochemistry 29, 4659 (1990) https://doi.org/10.1021/bi00471a022
  3. G. Duan and D. Walther, PLOS Comput. Biol. 11, e1004049 (2015) https://doi.org/10.1371/journal.pcbi.1004049
  4. M. Merlin, E. Gecchele, S. Capaldi, M. Pezzotti and L. Avesani, BioMed Res. Int. 2014, 136419 (2014) https://doi.org/10.1155/2014/136419
  5. K. M. Davis, T. Foos, C. S. Bates, E. Tucker, C.-C. Hsu, W. Chen, H. Jin, J. B. Tyburski, J. V. Schloss, A. J. Tobin and J.-Y. Wu, Biochem. Biophys. Res. Commun. 267, 777 (2000) https://doi.org/10.1006/bbrc.1999.2038
  6. M. Powell, L. Prentice, T. Asawa, R. Kato, J. Sawicka, H. Tanaka, V. Petersen, A. Munkley, S. Morgan, B. R. Smith and J. Furmaniak, Clin. Chim. Acta 256, 175 (1996) https://doi.org/10.1016/S0009-8981(96)06422-4
  7. A. J. Moody, K. R. Hejnaes, M. O. Marshall, F. S. Larsen, E. Boel, I. Svendsen, E. Mortensen and T. Dyrberg, Diabetologia 38, 14 (1995) https://doi.org/10.1007/BF02369348
  8. T. Matsuba, M. Yano, N. Abiru, H. Takino, S. Akazawa, S. Nagataki and K. Yasukawa, J. Biochem. 121, 20 (1997) https://doi.org/10.1093/oxfordjournals.jbchem.a021563
  9. T. W. Kim, B. H. Chung and Y. K. Chang, Biotechnol. Prog. 21, 524 (2005) https://doi.org/10.1021/bp049645j
  10. H. Li, Y. Wang, A. Xu, S. Li, S. Jin and D. Wu, FEMS Yeast Res. 11, 160 (2011) https://doi.org/10.1111/j.1567-1364.2010.00701.x
  11. C. W. Zhao, J. X. Wang, D. H. Xiao and X. K. Ma, Sci. China 37, 1073 (1994)
  12. P. T. Reddy, R. G. Brinson, J. T. Hoopes, C. McClung, N. Ke, L. Kashi, M. Berkmen and Z. Kelman, MAbs 10, 992 (2018)
  13. T. Ju, Q. Zheng and R. D. Cummings, Glycobiology 16, 947 (2006) https://doi.org/10.1093/glycob/cwl008
  14. K. W. Moremen, M. Tiemeyer and A. V. Nairn, Nat. Rev. Mol. Cell Biol. 13, 448 (2012) https://doi.org/10.1038/nrm3383
  15. R. T. Peters, G. Toby, Q. Lu, T. Liu, J. D. Kulman, S. C. Low, A. J. Bitonti and G. F. Pierce, J. Thromb. Haemost. 11, 132 (2013) https://doi.org/10.1111/jth.12076
  16. R. M. Addabbo, M. D. Dalphin, M. F. Mecha, Y. Liu, A. Staikos, V. Guzman-Luna and S. Cavagnero, J. Phys. Chem. B 124, 6488 (2020) https://doi.org/10.1021/acs.jpcb.0c03039
  17. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne, Nucleic Acids Research 28, 235 (2000) https://doi.org/10.1093/nar/28.1.235
  18. A. P. Hansen, A. M. Petros, A. P. Mazar, T. M. Pederson, A. Rueter and S. W. Fesik, Biochemistry 31, 12713 (1992) https://doi.org/10.1021/bi00166a001
  19. A. P. Hansen, A. M. Petros, R. P. Meadows, D. G. Nettesheim, A. P. Mazar, E. T. Olejniczak, R. X. Xu, T. M. Pederson, J. Henkin and S. W. Fesik, Biochemistry 33, 4847 (1994) https://doi.org/10.1021/bi00182a013
  20. J. W. Lustbader, S. Birken, S. Pollak, A. Pound, B. T. Chait, U. A. Mirza, S. Ramnarain, R. E. Canfield and J. M. Brown, J. Biomol. NMR 7, 295 (1996) https://doi.org/10.1007/BF00200431
  21. T. A. Egorova-Zachernyuk, G. J. Bosman and W. J. Degrip, Appl. Microbiol. Biotechnol. 89, 397 (2011) https://doi.org/10.1007/s00253-010-2896-5
  22. E. Mitri, L. Barbieri, L. Vaccari and E. Luchinat, Analyst 143, 1171 (2018) https://doi.org/10.1039/c7an01464c
  23. M. Sastry, L. Xu, I. S. Georgiev, C. A. Bewley, G. J. Nabel and P. D. Kwong, J. Biomol. NMR 50, 197 (2011) https://doi.org/10.1007/s10858-011-9506-4
  24. S. J. Archer, A. Bax, A. B. Roberts, M. B. Sporn, Y. Ogawa, K. A. Piez, J. A. Weatherbee, M. L. S. Tsang and R. Lucas, Biochemistry 32, 1152 (1993) https://doi.org/10.1021/bi00055a021
  25. J. Klein-Seetharaman, P. Reeves, M. Loewen, E. Getmanova, J. Chung, H. Schwalbe, P. Wright and H. Khorana, Proc. Natl. Acad. Sci. U.S.A. 99, 3452 (2002) https://doi.org/10.1073/pnas.052713999
  26. J. Klein-Seetharaman, N. V. K. Yanamala, F. Javeed, P. J. Reeves, E. V. Getmanova, M. C. Loewen, H. Schwalbe and H. G. Khorana, Proc. Natl. Acad. Sci. U.S.A. 101, 3409 (2004) https://doi.org/10.1073/pnas.0308713101
  27. A. B. Patel, E. Crocker, P. J. Reeves, E. V. Getmanova, M. Eilers, H. G. Khorana and S. O. Smith, J. Mol. Biol. 347, 803 (2005) https://doi.org/10.1016/j.jmb.2005.01.069
  28. K. Werner, I. Lehner, H. K. Dhiman, C. Richter, C. Glaubitz, H. Schwalbe, J. Klein-Seetharaman and H. G. Khorana, J. Biomol. NMR 37, 303 (2007) https://doi.org/10.1007/s10858-007-9143-0
  29. K. Werner, C. Richter, J. Klein-Seetharaman and H. Schwalbe, J. Biomol. NMR 40, 49 (2008) https://doi.org/10.1007/s10858-007-9205-3
  30. Y. Arata, K. Kato, H. Takahashi and I. Shimada, Methods Enzymol. 239, 440 (1994) https://doi.org/10.1016/S0076-6879(94)39017-7
  31. L. E. Kay and K. H. Gardner, Curr. Opin. Struct. Biol. 7, 722 (1997) https://doi.org/10.1016/S0959-440X(97)80084-X
  32. C. S. Lee, E. S. Bishop, R. Zhang, X. Yu, E. M. Farina, S. Yan, C. Zhao, Z. Zheng, Y. Shu, X. Wu, J. Lei, Y. Li, W. Zhang, C. Yang, K. Wu, Y. Wu, S. Ho, A. Athiviraham, M. J. Lee, J. M. Wolf, R. R. Reid and T.-C. He, Genes Dis. 4, 43 (2017) https://doi.org/10.1016/j.gendis.2017.04.001
  33. F.-X. Theillet, A. Binolfi, B. Bekei, A. Martorana, H. M. Rose, M. Stuiver, S. Verzini, D. Lorenz, M. van Rossum, D. Goldfarb and P. Selenko, Nature 530, 45 (2016) https://doi.org/10.1038/nature16531
  34. H. Wen, Y. J. An, W. J. Xu, K. W. Kang and S. Park, Angew. Chem. Int. Ed. 54, 5374 (2015) https://doi.org/10.1002/anie.201410380
  35. E. Luchinat and L. Banci, IUCrJ. 4, 108 (2017) https://doi.org/10.1107/S2052252516020625
  36. L. Barbieri, E. Luchinat and L. Banci, Nat. Protoc. 11, 1101 (2016) https://doi.org/10.1038/nprot.2016.061
  37. Y. Yamaguchi, M. Nishimura, M. Nagano, H. Yagi, H. Sasakawa, K. Uchida, K. Shitara and K. Kato, Biochim. Biophys. Acta 1760, 693 (2006) https://doi.org/10.1016/j.bbagen.2005.10.002
  38. K. Shindo, K. Masuda, H. Takahashi, Y. Arata and I. Shimada, J. Biomol. NMR 17, 357 (2000) https://doi.org/10.1023/A:1008331100127
  39. C. Fuccio, E. Luchinat, L. Barbieri, S. Neri and M. Fragai, J. Biomol. NMR 64, 275 (2016) https://doi.org/10.1007/s10858-016-0026-0
  40. A. P. Hinck, S. J. Archer, S. W. Qian, A. B. Roberts, M. B. Sporn, J. A. Weatherbee, M. L. S. Tsang, R. Lucas, B.-L. Zhang, J. Wenker and D. A. Torchia, Biochemistry 35, 8517 (1996) https://doi.org/10.1021/bi9604946
  41. D. F. Wyss, J. M. Withka, M. H. Knoppers, K. A. Sterne, M. A. Recny and G. Wagner, Biochemistry 32, 10995 (1993) https://doi.org/10.1021/bi00092a008
  42. J. Anglister, T. Frey and H. M. McConnell, Biochemistry 23, 1138 (1984) https://doi.org/10.1021/bi00301a016