DOI QR코드

DOI QR Code

Purity assessment using quantitative NMR: establishment of SI traceability in organic analysis

  • Choi, Kihwan (Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science)
  • Received : 2020.03.17
  • Accepted : 2020.03.19
  • Published : 2020.03.20

Abstract

Quantitative nuclear magnetic resonance (qNMR) has been gaining attention as a purity assessment method. In particular, qNMR is recognized as the primary method to realize the Internal System of Units (SI) in organic analysis. The capability of quantitative analysis is recognized as the beginning of NMR development. NMR signals are proportional to the number of nuclei and qNMR has been used in various fields, such as metabolomics and food and pharmaceutical analysis. However, careful sample preparation and thorough optimization of measurement parameters are required to obtain accurate and reliable results. In this review, quantitative methods used in qNMR are discussed, and the important factors to be considered also introduced. The recent development of qNMR techniques including combination with chromatography and, multidimensional NMR are also presented.

Keywords

References

  1. P. De Bievre, R. Dybkaer, A. Fajgelj, and D. B. Hibbert, Pure Appl. Chem., 83, 1873. (2011) https://doi.org/10.1351/pac-rep-07-09-39
  2. S. Westwood, T. Choteau, A. Daireaux, R. D. Josephs, and R. I. Wielgosz, Anal. Chem., 85, 3118. (2013) https://doi.org/10.1021/ac303329k
  3. S. R. Davies, M. Alamgir, B. K. H. Chan, T. Dang, K. Jones, M. Krishnaswami, Y. W. Luo, P. S. R. Mitchell, M. Moawad, H. Swan, and G. J. Tarrant, Anal. Bioanal. Chem., 407, 7983. (2015) https://doi.org/10.1007/s00216-015-8971-0
  4. B. M. Huang, S. Y. Xiao, T. B. Chen, Y. Xie, P. Luo, L. Liu, and H. Zhou, J. Pharm. Biomed. Anal., 139, 193. (2017) https://doi.org/10.1016/j.jpba.2017.02.055
  5. G. del Campo, J. Zuriarrain, A. Zuriarrain, and I. Berregi, Food Chem., 196, 1031. (2016) https://doi.org/10.1016/j.foodchem.2015.10.036
  6. B.-M. Huang, S.-Y. Xiao, T.-B. Chen, Y. Xie, P. Luo, L. Liu, and H. Zhou, J. Pharm. Biomed. Anal., 139, 193. (2017) https://doi.org/10.1016/j.jpba.2017.02.055
  7. G. F. Pauli, B. U. Jaki, and D. C. Lankin, J. Nat. Prod., 68, 133. (2005) https://doi.org/10.1021/np0497301
  8. G. K. Webster and S. Kumar, Anal. Chem., 86, 11474. (2014) https://doi.org/10.1021/ac502871w
  9. T. Saito, T. Ihara, M. Koike, S. Kinugasa, Y. Fujimine, K. Nose, and T. Hirai, Accred. Qual. Assur., 14, 79. (2009) https://doi.org/10.1007/s00769-008-0461-z
  10. K. A. Lippa, D. L. Duewer, M. A. Nelson, S. R. Davies, and L. G. Mackay, Accred. Qual. Assur., 24, 407.(2019) https://doi.org/10.1007/s00769-019-01407-6
  11. T. Saito, T. Yamazaki, and M. Numata, Metrologia, 56, 054002. (2019) https://doi.org/10.1088/1681-7575/ab348d
  12. T. Huang, H. Li, W. Zhang, M. Numata, L. Mackay, J. Warren, H. Jiao, S. Westwood, and D. Song, Metrologia, 57, 014004. (2020) https://doi.org/10.1088/1681-7575/ab336b
  13. T. Saito, T. Ihara, T. Miura, Y. Yamada, and K. Chiba, Accred. Qual. Assur., 16, 421. (2011) https://doi.org/10.1007/s00769-011-0798-6
  14. R. J. Wells, J. Cheung, and J. M. Hook, Accred. Qual. Assur., 9, 450. (2004) https://doi.org/10.1007/s00769-004-0779-0
  15. T. Rundlof, M. Mathiasson, S. Bekiroglu, B. Hakkarainen, T. Bowden, and T. Arvidsson, J. Pharm. Biomed. Anal., 52, 645. (2010) https://doi.org/10.1016/j.jpba.2010.02.007
  16. R. Rigger, A. Ruck, C. Hellriegel, R. Sauermoser, F. Morf, K. Breitruck, and M. Obkircher, J. AOAC Int., 100, 1365. (2017) https://doi.org/10.5740/jaoacint.17-0093
  17. M. A. Nelson, J. F. Waters, B. Toman, B. E. Lang, A. Ruck, K. Breitruck, M. Obkircher, A. Windust, and K. A. Lippa, Anal. Chem., 90, 10510. (2018) https://doi.org/10.1021/acs.analchem.8b02575
  18. S. Westwood, T. Yamazaki, T. Huang, B. Garrido, I. Un, W. Zhang, G. Martos, N. Stoppacher, T. Saito, and R. Wielgosz, Metrologia, 56, 064001. (2019) https://doi.org/10.1088/1681-7575/ab45cb
  19. C. H. Cullen, G. J. Ray, and C. M. Szabo, Magn. Reson. Chem., 51, 705. (2013) https://doi.org/10.1002/mrc.4004
  20. G. K. Jayaprakasha and B. S. Patil, Talanta, 153, 268. (2016) https://doi.org/10.1016/j.talanta.2016.02.060
  21. I. W. Burton, M. A. Quilliam, and J. A. Walter, Anal. Chem., 77, 3123. (2005) https://doi.org/10.1021/ac048385h
  22. L. Barantin, A. L. Pape, and S. Akoka, Magnetic Resonance in Medicine, 38, 179. (1997) https://doi.org/10.1002/mrm.1910380203
  23. S. Akoka, L. Barantin, and M. Trierweiler, Anal. Chem., 71, 2554. (1999) https://doi.org/10.1021/ac981422i
  24. V. Silvestre, S. Goupry, M. Trierweiler, R. Robins, and S. Akoka, Anal. Chem., 73, 1862. (2001) https://doi.org/10.1021/ac0013204
  25. K. Mehr, B. John, D. Russell, and D. Avizonis, Anal. Chem., 80, 8320. (2008) https://doi.org/10.1021/ac800865c
  26. R. D. Farrant, J. C. Hollerton, S. M. Lynn, S. Provera, P. J. Sidebottom, and R. J. Upton, Magn. Reson. Chem., 48, 753. (2010) https://doi.org/10.1002/mrc.2647
  27. T. Yamazaki, S. Nakamura, and T. Saito, Metrologia, 54, 224. (2017) https://doi.org/10.1088/0026-1394/54/2/224
  28. R. J. Abraham, J. J. Byrne, L. Griffiths, and M. Perez, Magn. Reson. Chem., 44, 491. (2006) https://doi.org/10.1002/mrc.1747
  29. N. Saito, T. Saito, T. Yamazaki, Y. Fujimine, and T. Ihara, Accred. Qual. Assur., 22, 171. (2017) https://doi.org/10.1007/s00769-017-1263-y
  30. T. Saito, S. Nakaie, M. Kinoshita, T. Ihara, S. Kinugasa, A. Nomura, and T. Maeda, Metrologia, 41, 213. (2004) https://doi.org/10.1088/0026-1394/41/3/015
  31. P. A. Hays and T. Schoenberger, Anal. Bioanal. Chem., 406, 7397. (2014) https://doi.org/10.1007/s00216-014-8205-x
  32. F. Malz and H. Jancke, Anal. Bioanal. Chem., 385, 760. (2006) https://doi.org/10.1007/s00216-006-0415-4
  33. T. Huang, W. Zhang, X. Dai, N. Li, L. Huang, C. Quan, H. Li, and Y. Yang, Anal. Methods, 8, 4482. (2016) https://doi.org/10.1039/C6AY00570E
  34. W. Zhang, T. Huang, H. Li, X. Dai, C. Quan, and Y. He, Talanta, 172, 78. (2017) https://doi.org/10.1016/j.talanta.2017.04.080
  35. M. Godejohann, A. Preiss, and C. Mugge, Anal. Chem., 70, 590. (1998) https://doi.org/10.1021/ac970630s
  36. T. Saito, R. Iwasawa, T. Ihara, S. Kinugasa, A. Nomura, and T. Maeda, Chromatography, 24, 117. (2003)
  37. J. Sykora, P. Bernasek, M. Zarevucka, M. Kurfurst, H. Sovova, and J. Schraml, J. Chromatogr. A, 1139, 152. (2007) https://doi.org/10.1016/j.chroma.2006.11.041
  38. T. Vehovec and A. Obreza, J. Chromatogr. A, 1217, 1549. (2010) https://doi.org/10.1016/j.chroma.2010.01.007
  39. G. K. Webster, I. Marsden, C. A. Pommerening, C. M. Tyrakowski, and B. Tobias, J. Pharm. Biomed. Anal., 49, 1261. (2009) https://doi.org/10.1016/j.jpba.2009.02.027
  40. Y. Kitamaki, N. Saito, T. Yamazaki, S. Otsuka, S. Nakamura, Y. Nishizaki, N. Sugimoto, M. Numata, and T. Ihara, Anal. Chem., 89, 6963. (2017) https://doi.org/10.1021/acs.analchem.6b05074
  41. R. D. Josephs, N. Stoppacher, A. Daireaux, T. Choteau, K. A. Lippa, K. W. Phinney, S. Westwood, and R. I. Wielgosz, TrAC, Trends Anal. Chem., 101, 108. (2018) https://doi.org/10.1016/j.trac.2017.09.026
  42. J. E. Melanson, M.-P. Thibeault, B. B. Stocks, D. M. Leek, G. McRae, and J. Meija, Anal. Bioanal. Chem., 410, 6719. (2018) https://doi.org/10.1007/s00216-018-1272-7
  43. P. Giraudeau, Magn. Reson. Chem., 52, 259. (2014) https://doi.org/10.1002/mrc.4068
  44. S. Heikkinen, M. M. Toikka, P. T. Karhunen, and I. A. Kilpelainen, J. Am. Chem. Soc., 125, 4362. (2003) https://doi.org/10.1021/ja029035k
  45. D. J. Peterson and N. M. Loening, Magn. Reson. Chem., 45, 937. (2007) https://doi.org/10.1002/mrc.2073
  46. H. Koskela, O. Heikkila, I. Kilpelainen, and S. Heikkinen, Journal of Magnetic Resonance, 202, 24. (2010) https://doi.org/10.1016/j.jmr.2009.09.021
  47. K. Hu, W. M. Westler, and J. L. Markley, J. Am. Chem. Soc., 133, 1662. (2011) https://doi.org/10.1021/ja1095304
  48. K. Hu, J. J. Ellinger, R. A. Chylla, and J. L. Markley, Anal. Chem., 83, 9352. (2011) https://doi.org/10.1021/ac201948f
  49. F. Fardus-Reid, J. Warren, and A. LeGresley, Anal. Methods, 8. (2016)
  50. R. Cao, A. Nonaka, F. Komura, and T. Matsui, Food Chem., 171, 8. (2015) https://doi.org/10.1016/j.foodchem.2014.08.105