• Title/Summary/Keyword: nuclear factor κB

Search Result 375, Processing Time 0.024 seconds

Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics

  • Bae, Sojung;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1801-1809
    • /
    • 2020
  • Chikungunya virus (CHIKV) was first identified in 1952 as a causative agent of outbreaks. CHIKV is transmitted by two mosquito species, Aedes aegypti and A. albopictus. Symptoms after CHIKV infection in human are typically fever and joint pain, but can also include headache, muscle pain, joint swelling, polyarthralgia, and rash. CHIKV is an enveloped single-stranded, positive-sense RNA virus with a diameter of approximately 70 nm. The pathogenesis of CHIKV infection and the mechanism by which the virus evades the innate immune system remain poorly understood. Moreover, little is known about the roles of CHIKV-encoded genes in the viral evasion of host immune responses, especially type I interferon (IFN) responses. Therefore, in the present study, we screened CHIKV-encoded genes for their regulatory effect on the activation of nuclear factor kappa B (NF-κB), a critical transcription factor for the optimal activation of IFN-β. Among others, non-structural protein 2 (nsP2) strongly inhibited melanoma differentiation-associated protein 5 (MDA5)-mediated induction of the NF-κB pathway in a dose-dependent manner. Elucidation of the detailed mechanisms of nsP2-mediated inhibition of the MDA5/RIG-I signaling pathway is anticipated to contribute to the development of virus-specific therapeutics against CHIKV infection.

Liver Kinase B1 Mediates Its Anti-Tumor Function by Binding to the N-Terminus of Malic Enzyme 3

  • Seung Bae Rho;Hyun Jung Byun;Boh-Ram Kim;Chang Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.330-339
    • /
    • 2023
  • Liver kinase B1 (LKB1) is a crucial tumor suppressor involved in various cellular processes, including embryonic development, tumor initiation and progression, cell adhesion, apoptosis, and metabolism. However, the precise mechanisms underlying its functions remain elusive. In this study, we demonstrate that LKB1 interacts directly with malic enzyme 3 (ME3) through the N-terminus of the enzyme and identified the binding regions necessary for this interaction. The binding activity was confirmed to promote the expression of ME3 in an LKB1-dependent manner and was also shown to induce apoptosis activity. Furthermore, LKB1 and ME3 overexpression upregulated the expression of tumour suppressor proteins (p53 and p21) and downregulated the expression of antiapoptotic proteins (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and B-cell lymphoma 2 (Bcl-2)). Additionally, LKB1 and ME3 enhanced the transcription of p21 and p53 and inhibited the transcription of NF-κB. Moreover, LKB1 and ME3 suppressed the phosphorylation of various components of the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B signaling pathway. Overall, these results suggest that LKB1 promotes pro-apoptotic activities by inducing ME3 expression.

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

Hibiscus hamabo Exerts Anti-inflammatory Effects in Lipopolysaccharide-induced RAW 264.7 Cells

  • Seo-Hyun Yun;Ji-Eun Yang;Jong-Yun Im;So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park;Ji-Sun Mun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.55-55
    • /
    • 2021
  • Hibiscus hamabo is a deciduous shrub that grows around salt marshes and is considered a semi-mangrove plant found in Asia. There are no studies on the biological activity of H. hamabo except for studies on the anthocyanin content. We investigated the anti-inflammatory effects of H. hamabo extract (HHE) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. As nuclear factor-kappa B (NF-kB) induced by LPS moves into the nucleus, inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines are promoted and the inflammatory reaction begins. The nitric oxide (NO) production decreased by the treatment of HHE. Moreover, mRNA levels of inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, were significantly suppressed by HHE. Similarly, the expressions of iNOS and COX-2 were also decreased. The phosphorylation of p65, a subunit of NF-κB, was suppressed by HHE. As a result, HHE can be used as an effective natural material for the anti-inflammatory agent.

  • PDF

Immunostimulatory activity of hydrolyzed and fermented Platycodon grandiflorum extract occurs via the MAPK and NF-κB signaling pathway in RAW 264.7 cells

  • Jae In, Jung;Hyun Sook, Lee;So Mi, Kim;Soyeon, Kim;Jihoon, Lim;Moonjea, Woo;Eun Ji, Kim
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.685-699
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG) has long been known as a medicinal herb effective in various diseases, including bronchitis and asthma, but is still more widely used for food. Fermentation methods are being applied to increase the pharmacological composition of PG extracts and commercialize them with high added value. This study examines the hydrolyzed and fermented PG extract (HFPGE) fermented with Lactobacillus casei in RAW 264.7 cells, and investigates the effect of amplifying the immune and the probable molecular mechanism. MATERIALS/METHODS: HFPGE's total phenolic, flavonoid, saponin, and platycodin D contents were analyzed by colorimetric analysis or high-performance liquid chromatography. Cell viability was measured by the MTT assay. Phagocytic activity was analyzed by a phagocytosis assay kit, nitric oxide (NO) production by a Griess reagent system, and cytokines by enzyme-linked immunosorbent assay kits. The mRNA expressions of inducible nitric oxide synthase (iNOS) and cytokines were analyzed by reverse transcription-polymerase chain reaction, whereas MAPK and nuclear factor (NF)-κB activation were analyzed by Western blots. RESULTS: Compared to PGE, HFPGE was determined to contain 13.76 times and 6.69 times higher contents of crude saponin and platycodin D, respectively. HFPGE promoted cell proliferation and phagocytosis in RAW 264.7 cells and regulated the NO production and iNOS expression. Treatment with HFPGE also resulted in increased production of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-X-C motif chemokine ligand10, granulocyte-colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, and the mRNA expressions of these cytokines. HFPGE also resulted in significantly increasing the phosphorylation of NF-κB p65, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. CONCLUSIONS: Taken together, our results imply that fermentation and hydrolysis result in the extraction of more active ingredients of PG. Furthermore, we determined that HFPGE exerts immunostimulatory activity via the MAPK and NF-κB signaling pathways.

Rectal cancer-derived exosomes activate the nuclear factor kappa B pathway and lung fibroblasts by delivering integrin beta-1

  • Qingkun Gao;Ke An;Zhaoya Gao;Yanzhao Wang;Changmin Ding;Pengfei Niu;Fuming Lei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.375-381
    • /
    • 2023
  • Numerous studies have revealed the importance of tumor-derived exosomes in rectal cancer (RC). This study aims to explore the influence of tumor-derived exosomal integrin beta-1 (ITGB1) on lung fibroblasts in RC along with underlying mechanisms. Exosome morphology was observed using a transmission electron microscope. Protein levels of CD63, CD9, ITGB1, p-p65 and p65 were detected using Western blot. To determine ITGB1's mRNA expression, quantitative real-time polymerase chain reaction was used. Moreover, levels of interleukin (IL)-8, IL-1β, and IL-6 in cell culture supernatant were measured via commercial ELISA kits. ITGB1 expression was increased in exosomes from RC cells. The ratio of p-p65/p65 as well as levels of interleukins in lung fibroblasts was raised by exosomes derived from RC cells, while was reduced after down-regulation of exosomal ITGB1. The increased ratio of p-p65/p65 as well as levels of pro-inflammatory cytokines caused by exosomes from RC cells was reversed by the addition of nuclear factor kappa B (NF-κB) inhibitor. We concluded that the knockdown of RC cells-derived exosomal ITGB1 repressed activation of lung fibroblasts and the NF-κB pathway in vitro.

Anti-inflammatory Effect of Yukil-san Water Extract on LPS-induced RAW 264.7 Cells (LPS로 활성화된 RAW 264.7 cell에서 NF-𝜅B억제를 통한 육일산(六一散) 물추출물의 염증억제효과)

  • Lee, Chang Wook;Park, Sang Mi;Kim, Eun Ok;Byun, Sung Hui;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.45-57
    • /
    • 2022
  • Objectives : Yukil-san (YIS, 六一散; Liu yi san) is composed of Talcum and Glycyrrhizae Radix, the name is said to be derived from the proportion of the two herbal components of the formula. The YIS originated from 'Formulas from the discussion illuminating the Yellow Emperor's Basic Question'(黃帝素問宣明論方; Huang di su wen xuan ming lun fang) written by Liu Wan-Su (劉完素). YIS could clear summerheat, resolve dampness, and augment the qi. This formula may be used to treat the common cold, influenza, acute gastroenteritis, cystitis, urethritis and bacillary dysentery. But, there is insufficient of study about the effects of YIS on the anti-inflammatory activities. The present study evaluated the anti-inflammatory effects of YIS on lipopolysaccharide (LPS)-activated RAW 264.7 cells. Methods : Cell viability was assessed by MTT assay and nitric oxide (NO) was evaluated by measuring the nitrite content in culture medium. Pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β and IL-6 were quantified by ELISA kit. The expression of proteins related with nuclear factor-κB (NF-κB) pathway and inducible NO synthase (iNOS) were assessed by western blot analysis. Results : YIS significantly inhibited the expression of iNOS increased by LPS, and thus significantly inhibited the production of NO. In addition, YIS significantly inhibited pro-inflammatory cytokines. In the regulation of inflammation, NF-κB pathway plays a crucial role. YIS inhibited the expression of p-IκBα and thus inhibited the translocation of NF-κB to the nucleus. Conclusions : These results suggest that YIS ameliorates inflammatory response in LPS-activated RAW 264.7 cells through the inhibition of inflammatory mediators, via suppression of the NF-κB pathway. Therefore, this study provides objective evidence for the anti-inflammatory effect of YIS including the underlying mechanisms.

ⳑ-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats

  • Zhengxuan, Wang;Mingcai, Liang;Hui, Li;Bingxiao, Liu;Lin, Yang
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of ⳑ-methionine in rats. MATERIALS/METHODS: Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of ⳑ-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS: Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed ⳑ-methionine, which were attributed to the stimulation of GST by ⳑ-methionine. With decreasing HNE levels, ⳑ-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by ⳑ-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by ⳑ-methionine. The anti-inflammatory action of ⳑ-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS: This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to ⳑ-methionine availability. The anti-inflammatory mechanism exerted by ⳑ-methionine was to inhibit NF-κB activation and to up-regulate GST.

Effects of Curcumae longae Rhizoma and Cinnamomi Ramulus Mixture on Anti-inflammatory Activities in Lipopolysaccharide-stimulated RAW 264.7 Cells (강황(薑黃) 계지(桂枝) 복합물이 RAW 264.7 세포에서 항염증 활성에 미치는 영향)

  • Ji, Choi;Hae-Jin, Park;Il-ha, Jeong;Min Ju, Kim;Mi-Rae, Shin;Seong-Soo, Roh;Soon-Ae, Park;Mi-Lim, Kim
    • The Korea Journal of Herbology
    • /
    • v.38 no.2
    • /
    • pp.17-26
    • /
    • 2023
  • Objectives : A persistent inflammatory response can cause diseases such as fibrosis, cancer, and allergies. This study aimed to investigate the anti-inflammatory activity of Curcumae longae Rhizoma and Cinnamomi Ramulus Mixture (CCM) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Methods : The total polyphenol and flavonoid contents of CCM were confirmed through an in vitro experiment. Also, radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Hydroxyl were confirmed. Moreover, ferric reducing antioxidant power (FRAP) activity were confirmed. After, CCM (50, 100, and 200 ㎍/mL) were applied to 0.1 ㎍/mL LPS-stimulated RAW264.7 cells. The levels of nitric oxide (NO) and pro-inflammatory cytokines in the supernatant fraction were determined. Also, the expressions of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways were detected using Western blot. Results : As a result of in vitro experiments, there was an excellent antioxidant activity in CCM-treated cells. In addition, in RAW264.7 cells stimulated with LPS, the increased NO level was inhibited in a concentration-dependent manner by the treatment of CCM. In addition, inflammatory cytokines production were significantly inhibited in a concentration-dependent manner in CCM-treated group. CCM treatment significantly decreased the protein expressions of MAPKs. Moreover, the expressions of NF-κBp65 and cyclooxygenase-2 (COX-2) were significantly decreased when 200 mg/kg of CCM was applied, and phospho-inhibitor of nuclear factor kappa B-α (p-IκBα) and inducible nitric oxide synthase (iNOS) were significantly decreased at all concentrations treated with CCM. Conclusion : Our findings show that CCM exhibited excellent antioxidant activity and exhibited superior anti-inflammatory effect through the MAPKs and NF-κB pathways in LPS-stimulated RAW 264.7 macrophages.

Inhibitory effects of Oxya chinensis sinuosa ethanol extract on RANKL-induced osteoclast differentiation

  • Ra-Yeong Choi;Bong Sun Kim;Sohyun Park;Minchul Seo;Joon Ha Lee;HaeYong Kweon;In-Woo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.13-18
    • /
    • 2024
  • The rice field grasshopper, Oxya chinensis sinuosa (OC), has traditionally been utilized in Korea for various purposes; however, its potential benefits in the context of osteoporosis remain unclear. The results revealed that OC ethanol extract (OCE) significantly inhibited the formation and activity of tartrate-resistant acid phosphatase (TRAP)-positive cells in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, OCE, at concentrations ranging from 100 to 400 ㎍/mL, demonstrated a dose-dependent reduction in the protein expression of osteoclast-specific markers, including nuclear factor of activated T cell cytoplasmic 1, c-Src, and TRAP, when compared to RANKL stimulation alone. Additionally, OCE significantly inhibited RANKL-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not the activation of extracellular signal-regulated kinase. Collectively, these results indicate that OCE suppresses osteoclastogenesis by attenuating the phosphorylation of p38 MAPK and JNK. Consequently, these findings suggest that OCE holds promise for the prevention of osteoporosis.