DOI QR코드

DOI QR Code

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway

니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구

  • Se Gwang JANG (The Rheumatism Research Center, The Catholic University)
  • 장세광 (가톨릭대학교 류마티스연구센터)
  • Received : 2023.11.14
  • Accepted : 2023.12.09
  • Published : 2023.12.31

Abstract

Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

패혈증은 병원성 감염에 의해 여러 장기에 나타나는 전신성 염증 반응으로, 현재로서는 유망한 치료제가 없다. Signal transducer and activator of transcription 3 (STAT3)은 세포 신호전달 전사 인자로서 항염증 및 염증 반응과 관련된 다양한 세포의 생물학적 과정에서 중요한 역할을 한다. Niclosamide는 FDA에서 승인된 구충제로 STAT3 조절에 관여한다고 알려져 있다. C57BL/6 마우스에 복강 주사로 지질 다당체 (lipopolysaccharide, LPS)를 투여해 패혈증을 유발하였고, Niclosamide를 LPS 주사 2시간 후에 경구 투여하였다. 본 연구에서 Niclosamide가 LPS로 유발된 패혈증 모델의 생존률과 폐 손상을 완화시켰고, 혈청 내 interleukin (IL)-6, 종양괴사인자(tumor necrosis factor-α, TNF-α), IL-1β, AST, ALT, LDH 수치를 유의하게 감소시켰다. 또한 폐 조직 면역 블롯을 통해 PI3K, AKT, NF-κB, STAT3 신호 전달 경로가 Niclosamide에 의해 조절되는 것을 확인하였다. Niclosamide는 LPS를 자극한 RAW 264.7 세포주에서 IL-6, TNF-α, IL-1β와 같은 염증성 사이토카인의 발현을 감소시켰으며, 또한 STAT3의 인산화를 감소시켰다. 본 연구를 통해 Niclosamide에 의한 STAT3 조절이 염증 반응을 억제함으로써 패혈증 모델에 대한 새로운 치료 전략을 제시하였다.

Keywords

References

  1. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75-87. https://doi.org/10.1016/s0140-6736(18)30696-2
  2. Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm. 2013;2013:165974. https://doi.org/10.1155/2013/165974
  3. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3:169-176. https://doi.org/10.1038/nri1004
  4. Remick DG, Newcomb DE, Bolgos GL, Call DR. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock. 2000;13:110-116. https://doi.org/10.1097/00024382-200013020-00004
  5. Monsalve E, Ruiz-Garcia A, Baladron V, Ruiz-Hidalgo MJ, Sanchez-Solana B, Rivero S, et al. Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol. 2009;39:2556-2570. https://doi.org/10.1002/eji.200838722
  6. Fink MP, Warren HS. Strategies to improve drug development for sepsis. Nat Rev Drug Discov. 2014;13:741-758. https://doi.org/10.1038/nrd4368
  7. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al.; PROWESS-SHOCK Study Group. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366:2055-2064. https://doi.org/10.1056/nejmoa1202290
  8. Chen W, Mook RA Jr, Premont RT, Wang J. Niclosamide: beyond an antihelminthic drug. Cell Signal. 2018;41:89-96. https://doi.org/10.1016/j.cellsig.2017.04.001
  9. Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, et al. Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J Natl Cancer Inst. 2011;103:1018-1036. https://doi.org/10.1093/jnci/djr190
  10. Yo YT, Lin YW, Wang YC, Balch C, Huang RL, Chan MW, et al. Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol Cancer Ther. 2012;11:1703-1712. https://doi.org/10.1158/1535-7163.mct-12-0002
  11. Ren X, Duan L, He Q, Zhang Z, Zhou Y, Wu D, et al. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med Chem Lett. 2010;1:454-459. https://doi.org/10.1021/ml100146z
  12. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016;31:1-15. https://doi.org/10.1016/j.cytogfr.2016.05.001
  13. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994;77:63-71. https://doi.org/10.1016/0092-8674(94)90235-6
  14. Hilliard KL, Allen E, Traber KE, Kim Y, Wasserman GA, Jones MR, et al. Activation of hepatic STAT3 maintains pulmonary defense during endotoxemia. Infect Immun. 2015;83:4015-4027. https://doi.org/10.1128/iai.00464-15
  15. Huang W, Huang L, Wen M, Fang M, Deng Y, Zeng H. Long non-coding RNA DILC is involved in sepsis by modulating the signaling pathway of the interleukin-6/signal transducer and activator of transcription 3/Toll-like receptor 4 axis. Mol Med Rep. 2018;18:5775-5783. https://doi.org/10.3892/mmr.2018.9559
  16. Fang X, Abbott J, Cheng L, Colby JK, Lee JW, Levy BD, et al. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A4. J Immunol. 2015;195:875-881. https://doi.org/10.4049/jimmunol.1500244
  17. Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: the way forward? Cancer Lett. 2019;459:30-40. https://doi.org/10.1016/j.canlet.2019.05.025
  18. Fleischmann-Struzek C, Mikolajetz A, Schwarzkopf D, Cohen J, Hartog CS, Pletz M, et al. Challenges in assessing the burden of sepsis and understanding the inequalities of sepsis outcomes between National Health Systems: secular trends in sepsis and infection incidence and mortality in Germany. Intensive Care Med. 2018;44:1826-1835. https://doi.org/10.1007/s00134-018-5377-4
  19. Su BC, Huang HN, Lin TW, Hsiao CD, Chen JY. Epinecidin-1 protects mice from LPS-induced endotoxemia and cecal ligation and puncture-induced polymicrobial sepsis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:3028-3037. https://doi.org/10.1016/j.bbadis.2017.08.032
  20. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18:596. https://doi.org/10.1186/s13054-014-0596-8
  21. Moriyama K, Nishida O. Targeting cytokines, pathogen-associated molecular patterns, and damage-associated molecular patterns in sepsis via blood purification. Int J Mol Sci. 2021;22:8882. https://doi.org/10.3390/ijms22168882
  22. Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36:247-277. https://doi.org/10.1146/annurev-immunol-051116-052415
  23. Beyer D, Hoff J, Sommerfeld O, Zipprich A, Gassler N, Press AT. The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. Mol Med. 2022;28:84. https://doi.org/10.1186/s10020-022-00510-8
  24. Meng A, Zhang X, Shi Y. Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Exp Ther Med. 2014;8:1772-1776. https://doi.org/10.3892/etm.2014.2023
  25. Xia T, Zhang M, Lei W, Yang R, Fu S, Fan Z, et al. Advances in the role of STAT3 in macrophage polarization. Front Immunol. 2023;14:1160719. https://doi.org/10.3389/fimmu.2023.1160719
  26. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006-1014. https://doi.org/10.4049/jimmunol.1601515
  27. Matsukawa A, Takeda K, Kudo S, Maeda T, Kagayama M, Akira S. Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J Immunol. 2003;171:6198-6205. https://doi.org/10.4049/jimmunol.171.11.6198