
INTRODUCTION

Liver kinase B1 (LKB1), also known as the serine/threonine 
kinase 11 (STK11) gene, is a widely expressed tumor sup-
pressor gene that is commonly associated with Peutz-Jeghers 
syndrome (PJS) (Avilés-Salas et al., 2023; Omori et al., 2023). 
It plays a crucial role in regulating multiple cellular processes, 
including tumor initiation and progression (Gao et al., 2010; 
Hardie, 2013), invasion, and adhesion (Zagórska et al., 2010; 
Konen et al., 2016), energy metabolism (Bhatt et al., 2023), 
cell cycle (Gurumurthy et al., 2010), cell migration, and em-
bryonic development (Men et al., 2015). LKB1 functions as a 
master regulator by directly phosphorylating the AMP-activat-
ed protein kinase (AMPK) family of proteins, thereby modulat-
ing their activity (Shackelford and Shaw, 2009; Zhang et al., 
2013). Mutations in the LKB1 gene have been identified in 
several types of cancer tissues, including non-small cell lung, 
ovarian, cervical, endometrial, breast, pancreatic, and thyroid 
carcinomas, and have also been implicated in various mouse 
models of cancer (Shackelford and Shaw, 2009; Zhao and Xu, 
2014; Wei et al., 2016; Katipally et al., 2023).

AMP-activated protein kinase (AMPK) is a critical enzyme 
involved in the regulation of various cellular processes includ-
ing cell growth, homeostasis, and metabolism, as well as au-
tophagy control (Rho et al., 2021). The enzyme is a highly 
conserved heterotrimeric complex consisting of α catalytic 
subunits (α1 and α2) and β (β1 and β2) and γ (γ1, γ2, and 
γ3) regulatory subunits (Mihaylova and Shaw, 2011). AMPK 
has been implicated in various physiological and pathological 
conditions, including cancer, diabetes, Alzheimer’s disease, 
inflammation, aging, and metabolic syndrome. Activation of 
AMPK has been shown to be beneficial for treating these 
diseases, and is promoted by the commonly prescribed oral 
anti-diabetic agent, metformin. AMPK activity is regulated 
by adenoside diphosphate (ADP)/adenosine triphosphate 
(ATP) and adenosine monophosphate (AMP)/ATP ratios, with 
binding of AMP and ADP to the γ subunit protecting AMPK 
against dephosphorylation and promoting its phosphorylation 
(Steinberg and Kemp, 2009; Hardie et al., 2012; Oakhill et 
al., 2012). AMPK is also regulated by phosphorylation of a 
threonine residue (Thr172) in the catalytic subunit, as well as 
by the ubiquitin proteasome system, protein translation, and 
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Liver kinase B1 (LKB1) is a crucial tumor suppressor involved in various cellular processes, including embryonic development, 
tumor initiation and progression, cell adhesion, apoptosis, and metabolism. However, the precise mechanisms underlying its func-
tions remain elusive. In this study, we demonstrate that LKB1 interacts directly with malic enzyme 3 (ME3) through the N-terminus 
of the enzyme and identified the binding regions necessary for this interaction. The binding activity was confirmed to promote the 
expression of ME3 in an LKB1-dependent manner and was also shown to induce apoptosis activity. Furthermore, LKB1 and ME3 
overexpression upregulated the expression of tumour suppressor proteins (p53 and p21) and downregulated the expression of 
antiapoptotic proteins (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and B-cell lymphoma 2 (Bcl-2)). Ad-
ditionally, LKB1 and ME3 enhanced the transcription of p21 and p53 and inhibited the transcription of NF-κB. Moreover, LKB1 and 
ME3 suppressed the phosphorylation of various components of the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase 
B signaling pathway. Overall, these results suggest that LKB1 promotes pro-apoptotic activities by inducing ME3 expression.
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autophagy (Huynh et al., 2016). These multiple pathways sug-
gest the complexity and importance of AMPK in maintaining 
cellular homeostasis.

Malic enzymes (MEs) are a family of enzymes that are pres-
ent in a wide range of species, from bacteria to humans, and 
are involved in various biological processes, such as metabo-
lism, photosynthesis, and fatty acid biosynthesis (Dmitriev, 
2001). In mammals, three isoforms of ME have been identi-
fied: ME1, ME2, and ME3 (Chang and Tong, 2003; Hasan et 
al., 2015; Wang et al., 2021). While ME1 is distributed in the 
cytosol, ME2 and ME3 are found in the mitochondria. These 
enzymes are homotetramers, and their amino acid sequences 
are highly conserved, with approximately 68% sequence iden-
tity (Hasan et al., 2015). The oxidative decarboxylation of L-
malate to pyruvate while simultaneously reducing NAD(P)+ to 
NAD(P)H is catalyzed by MEs (Cheng et al., 2016), which are 
essential for the regulation of the cellular redox status (Costa 
Rosa et al., 1995) and for biosynthetic processes, including 
lipid and fatty acid synthesis (Infante and Huszagh, 1998; 
Dmitriev, 2001). The enzymatic activity of ME proteins is inhib-
ited by ATP and is activated by fumarate (Yang et al., 2002). 
ME1 and ME2 are abundant in pancreatic islets and insulin 
cells, while the mRNA levels and enzymatic activity of ME3 are 
low in these cells (Hasan et al., 2015).

Several studies have reported on the roles of malic enzyme 
isoforms in tumorigenesis. For example, ME1 suppression 
has been shown to reduce metastasis of hepatocellular car-
cinoma by repressing the epithelial-mesenchymal transition in 
reactive oxygen species-induced signaling cascades (Wen et 
al., 2015). Similarly, ME2 depletion induces erythroid differen-
tiation in human K562 erythroleukemia cells (Ren et al., 2010) 
and apoptotic cell death and differentiation in lung tumor cells, 
and also suppresses Akt phosphorylation and activity (Ren et 
al., 2014). ME2 has also been shown to be a potential target 
for inhibiting tumor growth and invasiveness in various tumor 
cell types, including lung and melanoma cancer cells (Cheng 
et al., 2016; Zhang et al., 2023). In contrast, little is known 
about the role of ME3 in ovarian tumorigenesis. Further inves-
tigation is necessary to elucidate the potential involvement of 
ME3 in ovarian cancer development and progression.

In this study, we aimed to investigate the functional impor-
tance and molecular mechanism of ME3 in LKB1-induced 
apoptotic cell death in an in vitro experimental model system 
to address the pivotal role of LKB1 in human ovarian tumors. 
Our observations provide insights into the cellular mecha-
nisms through which ME3 contributes to LKB1-stimulated 
apoptosis in ovarian tumorigenesis.

MATERIALS AND METHODS

Culture conditions, chemicals, and antibodies
Human OVCAR-3 ovarian carcinoma cells and human 

embryonic kidney cells 293 (HEK293T) were obtained from 
the American Type Culture Collection (ATCC, Manassas, VA, 
USA), and were maintained in Dulbecco’s Modified Eagle 
Medium (DMEM; Life Technologies, Gaithersburg, MD, USA) 
supplemented with 10% heat-inactivated fetal bovine serum 
(FBS) and penicillin/streptomycin. Wortmannin and LY294002 
were purchased from Sigma (St. Louis, MO, USA). The pri-
mary antibodies used in this study were anti-LKB1, anti-ME3, 
anti-NF-κB, anti-Bcl-2, anti-p53, anti-PI3K, anti-phospho-PI3K, 

anti-Akt, anti-phospho-Akt (Ser473 and Thr308), anti-PDK-1, 
anti-phospho-PDK1 (Ser241), anti-mTOR, anti-phospho-mTOR 
(Ser2448), anti-TSC2, and anti-phospho-TSC2 (Ser1462), anti-
p70S6K, anti-phospho-p70S6K (Thr421), anti-GSK-3β, anti-
phospho-GSK-3β (Ser9), anti-4E-BP1, anti-phospho-4E-BP1 
(Thr70) (Cell Signaling, Beverly, MA), anti-Flag, anti-cyclin D1, 
anti-CDK4, anti-p21 (Santa Cruz Biotechnology, Santa Cruz, 
CA, USA), and β-actin (Sigma).

Yeast two-hybrid (Y2H) assay
The cDNA encoding the full-length and truncation mu-

tants (Met1–Ala200, Leu201–Asp350, and Glu351–Gln433) of LKB1 
were subcloned in the pGilda/LexA yeast shuttle vector at the 
EcoRI and XhoI restriction enzyme sites. The full-length ME3 
and three truncation mutants (Met1–Tyr200, Gly201–Glu400, and 
Glu401–Val604) were introduced into the pJG4-5 vector to gener-
ate B42 fusion proteins at the EcoRI and XhoI sites. The bait 
pGilda/LexA-LKB1 plasmid was transformed into the yeast 
strain EGY48 using a modified lithium acetate protocol (Rho 
et al., 2020). The ME3 cDNAs encoding pJG4-5 fusion pro-
teins were transformed into yeast competent cells that already 
contained pGilda/LexA-LKB1, and the transformants were se-
lected based on their tryptophan prototrophy (plasmid marker) 
on a synthetic medium (uracil, histidine, and tryptophan) con-
taining 2% (w/v) glucose. The relative binding of the interac-
tion was measured as previously described (Rho et al., 2020).

Co-immunoprecipitation and western blot
The co-immunoprecipitation (co-IP) assays were performed 

as previously described (Kang et al., 2022). Briefly, cells were 
trypsinized, centrifuged, and the pellets were washed with 
cold phosphate-buffered saline and resuspended in lysis buf-
fer [50 mM Tris-HCl pH 7.2, 150 mM NaCl, 1% Triton X-100, 
and a protease inhibitor cocktail containing 1 µg/mL leupeptin, 
1 µg/mL pepstatin, 2 µg/mL aprotinin, and 200 µg/mL phenyl-
methylsulfonyl fluoride (PMSF)]. The cell lysates were incu-
bated with anti-Flag antibody and precipitated with protein 
A-agarose (GE Healthcare Life Sciences, Piscataway, NJ, 
USA). Approximately 20-25 g precipitated protein was sepa-
rated by 10-12% sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred to Immobilon 
P membrane (Millipor Corporation, Billerica, MA, USA). After 
blocking, the membranes were incubated with specific primary 
antibodies. The membranes were rinsed three times with Tris-
buffered saline with Tween buffer for 5 min, and incubated with 
horseradish peroxidase-conjugated secondary antibodies for 
1 h at room temperature. The protein blots were exposed us-
ing an enhanced chemiluminescence detection system (GE 
Healthcare Life Sciences). Protein levels were measured 
using ImageQuant 5.0 software (Molecular Dynamics Inc., 
Sunnyvale, CA, USA) and normalized to levels of the loading 
control (β-actin). Values below the blots indicate relative ratios 
compared to the controls.

Apoptotic cell death assay
Cells were grown in chamber slides at a density of 4.5×104 

cells per well, transfected, incubated with fluorescein iso-
thiocyanate (FITC)-labeled annexin V and propidium iodide 
for 15 min according to the manufacturer’s instructions (BD 
PharMingen, Mississauga, ON, USA), and analyzed with a 
FACS Vantage (BD FACS Calibur Flow Cytometer, BD, An-
dover, MA, USA). Cell viability was estimated with the MTT 
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assay. Cells were maintained at a density of 4.5×103 cells per 
well in 96-well plates. Fresh medium including 10% FBS and 
20 µL of 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyl-2H-tetrazoli-
um bromide (MTT) solution (5 µg/mL; Sigma) was added to 
each well 3 d following transfection, and each well was incu-
bated for an additional 4 h at 37°C. Following centrifugation at 
500×g for 10 min, the supernatant was removed from the wells 
and the formazan was dissolved with DMSO. The amount of 
MTT formazan generated was measured as an absorbance 
of 540 nm using a microplate reader (SpectraMax, Molecular 
Devices, Sunnyvale, CA, USA).

Caspase-3 activity
Caspase-3 activity was measured as previously described 

(Rho et al., 2021). Briefly, 3.1×105 cells were grown in 60 cm2 
culture dishes. After apoptosis was induced, the cells were 
harvested by centrifugation, and the pellets were re-suspend-
ed in lysis buffer and incubated with caspase-3-specific fluo-
rometric substrates at 37°C for 1 h. A SpectraMax 340 micro-
plate reader (Molecular Devices, Sunnyvale, CA, USA) was 
used to analyze caspase-3 activity.

Luciferase activity assay
Luciferase activity in vitro was assayed as previously de-

scribed (Rho et al., 2022). Briefly, cells were grown to 85% 
confluency and co-transfected with promoter luciferase plas-
mids containing the Renilla luciferase reporter (Promega, 
Madison, WI, USA) for 24 h. Following lysis with radioimmuno-
precipitation buffer, the lysates were cleared by centrifugation 
at 14,000 rpm for 15 min, and the cell extracts were incubated 
with the luciferase substrate reagent at room temperature for 
30 min according to the manufacturer’s instructions. Then, a 5 
µL aliquot of each sample was quantified using a MicroLumat 
Plus LB96V luminometer (Berthold Technologies, Bad Wild-
bad, Germany). The ratio was normalized for Renilla lucifer-
ase activity to correct for variation in transfection efficiency.

PI3K activity
In vitro kinase assays were performed as described previ-

ously (Rho et al., 2011). Briefly, the cells were seeded at a 
density of 1.4×106 cells. Following overnight incubation, cells 
were treated with various concentrations of doxazosin for 6 h, 
and lysed in 1% NP-40 lysis buffer containing 20 mM Tris-HCl 
pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 mM MgCl2, 1% NP-40, 1 
mM PMSF, and 0.1 mM sodium orthovanadate. After removal 
of the insoluble materials by centrifugation, the supernatants 
were incubated for 1 h at 4°C with anti-p85 antibody, followed 
by incubation with protein A-agarose beads for an additional 
1 h at 4°C. The immunoprecipitates were incubated with a ki-
nase reaction mixture containing 200 µg/mL phosphatidylino-
sitol 3-phosphate and 2 µCi of [32P] ATP per assay at 37°C 
for 15 min. The reaction products were visualized by autora-
diography and the radioactive lipids were quantified by liquid 
scintillation counting.

Statistical analysis
Data values were expressed as the mean ± standard devia-

tion (SD) and were estimated by Student’s t-tests and analy-
ses of variance according to the number of groups compared. 
Significant differences (p<0.05) are depicted with asterisks in 
each figure. The analyses were performed with SPSS 20 soft-
ware (Statistical Product and Service Solutions, Chicago, IL, 

USA).

RESULTS

The tumor suppressor LKB1 directly interacts with ME3 
The study utilized a yeast two-hybrid (Y2H) protein-protein 

interaction (PPI) system and co-immunoprecipitation (co-IP) 
to investigate the molecular mechanism underlying the tumor 
suppressive effect of LKB1 in ovarian tumorigenesis.

ME3 was identified as a putative binding partner of LKB1 in 
the human ovary cDNA library through Y2H screening (acces-
sion number: BC022472.2; Fig. 1A). 

The relative binding of LKB1 to ME3 was confirmed by the 
activity of β-galactosidase in yeast cells co-expressing LKB1 
and ME3. As shown in Fig. 1B, β-galactosidase was fully ac-
tive with LKB1 and ME3 (82.08 ± 1.22), but failed in the ab-
sence of LKB1 (1.84 ± 0.51). 

Co-IP experiments were performed to further confirm the 
direct interaction between LKB1 and ME3 in OVCAR-3 cells. 
LKB1 (pcDNA3.1/LKB1) and ME3 (pcDNA3.1/Flag-ME3) or 
ME3 (pcDNA3.1/Flag-ME3) and the expression vector (pcD-
NA3.1) only were co-transfected into OVCAR-3 cells, and im-
munoprecipitation of the lysates was performed with anti-Flag 
antibody. The precipitated proteins were immunoblotted with 
the anti-LKB1 or anti-ME3 primary antibodies, and the results 
indicated that Flag-ME3 co-immunoprecipitated with LKB1 
(lane 2 in upper panel) (Fig. 1C).

The in vivo interaction between endogenous LKB1 and 
ME3 was also confirmed by co-IP in HEK293T cells (Fig. 1D). 
These findings provide insights into the molecular mecha-
nisms underlying the tumor suppressive effect of LKB1, sug-
gesting that ME3 is a direct binding partner of LKB1 in ovarian 
cancer cells.

LKB1 and ME3 additively increase apoptotic cell death
In this study, we aimed to investigate the effect of LKB1 

and ME3 overexpression on ovarian carcinoma cell prolifera-
tion and apoptosis. To assess cell viability, we overexpressed 
LKB1, ME3, or both in OVCAR-3 cells and performed an MTT 
assay after 48 hours. Our results showed that overexpression 
of LKB1 or ME3 alone reduced cell viability to approximately 
45% and 42%, respectively, compared to control cells. Co-
transfection of both plasmids resulted in a further decrease 
in cell viability (Fig. 2A, left panel). We also investigated the 
effects of different ratios of LKB1 (0.5 µg) and ME3 (0-0.5 µg) 
on cell apoptosis, and our data showed that co-transfection at 
ratios greater than 1:0 and 1:1 was associated with increased 
rates of apoptosis (Fig. 2A, right panel).

To further investigate the mutual regulation of LKB1 and 
ME3, we evaluated their expression levels after transient 
transfection of one another. Our results demonstrated that the 
expression of LKB1 increased with higher amounts of ME3, 
and a similar trend was observed for the expression of ME3 
after transient transfection of LKB1 (Fig. 2B, left panel). We 
confirmed that the decrease in cell viability was due to apop-
tosis using fluorescence-activated cell sorting, and our data 
showed that overexpression of LKB1 or ME3 increased the 
apoptotic cell population compared to control cells (Fig. 2C). 
Co-transfection with both plasmids was more effective than 
transfection of either plasmid alone, indicating that LKB1 and 
ME3 additively repressed cell proliferation.

Biomol  Ther 31(3), 330-339 (2023) 
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Finally, we investigated the activation of caspase-3 as a 
potential mechanism for the mutual regulation of LKB1 and 
ME3. Using a caspase-3 activity assay, we found that cells 
transfected with LKB1, ME3, or both exhibited a significant 
increase in caspase-3 activation. Co-transfection with both 
plasmids resulted in a greater increase in caspase-3 activity 
compared to transfection of either plasmid alone (Fig. 2D). 
These findings suggest that ME3 suppresses tumor cell pro-
liferation by augmenting LKB1-mediated apoptosis through 
direct interaction.

Mapping the interaction domain between human LKB1 
and ME3

To identify the specific regions of LKB1 and ME3 that are 
involved in their interaction, three LKB1 truncation mutants 
and three ME3 truncation mutants were constructed and 
transformed into yeast cells along with full-length human 

ME3 or LKB1, respectively (Fig. 3A). Yeast cells containing 
the Leu201-Asp350 truncation mutant of LKB1 grew on selec-
tive media, indicating that this region is capable of binding to 
ME3. However, yeast cells transformed with the Met1-Ala200 
or Glu351-Gln433 truncation mutants failed to grow, indicating 
that these regions are not sufficient for binding to ME3 (Fig. 3A, 
right panel). This result was confirmed by a β-galactosidase 
assay, which measures the activity of the reporter gene that is 
activated when LKB1 and ME3 bind (Fig. 3A).

To identify the ME3 region that binds to LKB1, three ME3 
truncation mutants were constructed and transformed into 
yeast cells along with full-length human LKB1 (Fig. 3B, left 
panel, full). The β-galactosidase assay revealed that the re-
gion of ME3 that binds to LKB1 is within Met1-Tyr200 (Fig. 3B, 
right panel). This result was confirmed by co-transforming the 
Leu201-Asp350 mutant of LKB1 with one of the three ME3 
mutants. Yeast cells containing the Leu201-Asp350 mutant 
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of LKB1 with the Met1-Tyr200 ME3 mutant grew on selective 
media (Fig. 3C) and showed positive β-galactosidase activity, 
indicating that these two regions can bind to each other. How-
ever, yeast cells transformed with the Met1-Ala200 or Glu351-
Gln433 ME3 mutants failed to grow (Fig. 3C) and showed no 
β-galactosidase activity, confirming that these regions are not 
sufficient for binding to LKB1.

These experiments provide evidence for the specific re-
gions of LKB1 and ME3 that are involved in their interaction.

LKB1 and ME3 control the expression of apoptotic and 
cell cycle-associated regulatory proteins

In order to better understand the biological effects of LKB1 
and ME3 in inducing apoptosis, we conducted an experiment 
to investigate the expression of proteins involved in cell cycle 
progression in OVCAR-3 cells. We estimated the transcrip-
tional activity of these proteins using a luciferase activity as-
say. After transfecting OVCAR-3 cells with LKB1 or ME3, we 
measured the expression of cyclin D1 and cyclin-dependent 
kinase 4 (CDK4). The expression levels of cyclin D1 and 
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CDK4 were decreased upon LKB1 or ME3 transfection in the 
cells. However, upon transfection of LKB1 or ME3 small inter-
fering RNA (siRNA) into the cells, the expression levels of cy-
clin D1 and CDK4 were restored, as shown in Fig. 4A and 4B 
(Fig. 4A, 4B). Additionally, the expression of p53 and p21, both 
involved in cell cycle regulation and apoptosis, was increased 
in cells transfected with LKB1 or ME3, while the expression 
of Bcl-2 and NF-κB, two anti-apoptotic proteins, was reduced 
(Fig. 4A, 4B). 

These findings were confirmed through a luciferase report-
er gene activity assay, which demonstrated that LKB1 and/or 
ME3 overexpression significantly increased the transcription 
of p53 and p21, while decreasing the transcription of Bcl-2 and 
NF-κB (Fig. 4C, 4D). 

These results suggest that LKB1 and ME3 overexpression 
may induce apoptosis in OVCAR-3 cells by regulating the 
transcription of key proteins involved in cell cycle progression 
and apoptosis.

Phosphorylation of Akt/mTOR signaling factors is 
inhibited by LKB1 and ME3

The experiment aimed to investigate the impact of LKB1 
and ME3 on the PI3K/mTOR/4E-BP1 signaling pathways in 
OVCAR-3 tumor cells, which regulate cell proliferation, protein 
synthesis, and angiogenesis (Guertin and Sabatini, 2005; Ma 
and Blenis, 2009; Jeon, 2016; Saxton and Sabatini, 2017; Sun 
and Song, 2021). 

We transfected OVCAR-3 cells with LKB1, ME3, or both, 
and observed a significant decrease in the phosphorylation of 
PI3K, which was similar to the effect of PI3K inhibitors wort-
mannin and LY294002 (Fig. 5A). The inhibition of PI3K activity 
led to a reduction in the phosphorylation and overall levels of 
Akt, a downstream target of PI3K (Fig. 5B). Additionally, we 
investigated the involvement of upstream and downstream 
components of Akt/mTOR, including PDK1, TSC-2, p70S6K, 
GSK-3β, and 4E-BP1. The results showed that the phosphory-
lation of mTOR/4E-BP1 was suppressed by the expression of 
LKB1 and ME3 (Fig. 5B).

These results suggest that LKB1 and ME3 repressed tu-

C

�-galactosidase
activity (unit)

1.15+0.81 92.15+1.23 1.42+0.89 1.37+0.78

LKB1
ME3

201 350
Vector only

201 350
1 200

201 350
201 400

201 350
401 604

�-galactosidase
activity (unit)

94.16+1.33 1.85+1.01 88.35+1.19 1.83+0.79

ME3
LKB1

Full
Full

Full
1 200

Full
201 350

Full
351 433

A

Met
1

Met
1

�-galactosidase
activity (unit)

94.16+1.33 91.02+1.26 1.96+0.64 2.02+0.66

B LKB1
ME3

Full
Full

Full
1 200

Full
201 400

Full
401 604

Met
1

Met
1

Fig. 3. Deletion mapping of the interaction domain between LKB1 and ME3 with the Y2H assay in vivo. (A) Left panel shows a schematic 
representation of the cDNA constructs for the full-length LKB1 and each LKB1 truncation. Right panel demonstrates the formation of a blue 
colony on a plate containing X-gal using Y2H analysis. (B) Left panel shows a schematic representation of the cDNA constructs for the full-
length ME3 and each ME3 truncation. Right panel shows the result of a protein-protein interaction identified with the Y2H system. (C) Inter-
action between the LKB1 Leu201–Asp350 truncation and three ME3 truncations, Met1–Tyr200, Gly201–Glu400, and Glu401–Val604, in the Y2H assay. 
Three independent experiments demonstrated similar results.



336https://doi.org/10.4062/biomolther.2023.041

mor cell growth via PI3K/mTOR/4E-BP1-dependent signaling 
pathways in ovarian tumorigenesis.

DISCUSSION

This study investigated the role and mechanisms of LKB1 
and ME3 in regulating apoptosis and cell cycle progression in 
ovarian tumorigenesis. The findings suggest that LKB1 and 
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ME3 play critical roles in these processes and dysregulation 
of these proteins may contribute to tumorigenesis.

The study identified a direct interaction between LKB1 
and ME3 and found that LKB1 and ME3 target the PI3K/
mTOR/4E-BP1 signaling pathway to trigger apoptosis in ovar-
ian tumorigenesis, highlighting the potential therapeutic value 
of targeting this pathway in the treatment of ovarian cancer.

The study also provides insight into the role of LKB1 in 
gynecological cancers. Loss of LKB1 expression has been 
identified as an early event in high-grade serous ovarian tu-
mor development, and LKB1 mutations have been found in 
cervical tumors, suggesting that dysregulation of LKB1 may 
be a contributing factor in the development of various types 
of gynecological cancers (Wingo et al., 2009; Avilés-Salas et 
al., 2023). 

Our study is consistent with recent research indicating that 
miRNAs may play a role in the development of ovarian tumors. 
In particular, mature miR-17 appears to target the LKB1-p53-
p21/WAF1 pathway, which can result in epigenetic alterations 
that promote tumorigenesis (Liu et al., 2015). 

LKB1 interacts with PTEN to inhibit cell proliferation and 
survival and represses anti-apoptotic factors to inhibit cell 
survival (Mehenni et al., 2005). In addition, LKB1 represses 
anti-apoptotic factors, including STAT3, JNK, c-myc, k-ras, 

MAPK, and cyclooxygenase-2, to inhibit cell survival (Rossi et 
al., 2002; Alessi et al., 2006; Partanen et al., 2007; Zhao and 
Xu, 2014). Previous studies have suggested that the tumor 
suppressor function of LKB1 results from the repression of cell 
cycle progression by its downstream targets, such as Brg1, 
p21, p27, and cyclin D1 (Marignani et al., 2001; Tiainen et al., 
2002; Liang et al., 2007; Scott et al., 2007). In our study, LKB1 
and ME3 overexpression increased the expression of p53 and 
p21 while repressing Bcl-2 and NF-κB expression in ovarian 
tumor cells (Fig. 4B, 4D). LKB1 and ME3 also additively sup-
pressed cell proliferation, with ME3-transfected cells exhibit-
ing around 42% suppression compared to control cells.

The identification of LKB1 as a tumor suppressor gene 
adds to the growing body of literature on the genetic aber-
rations underlying ovarian tumor development (Tanwar et 
al., 2014; Wang et al., 2018). Loss of LKB1 expression has 
been identified as an early event in high-grade serous ovar-
ian tumor development, and the current study provides further 
insight into the mechanisms by which LKB1 exerts its tumor 
suppressor function. 

Furthermore, our study demonstrated that LKB1 and ME3 
are involved in suppressing PI3K/Akt signaling pathway com-
ponents (Fig. 5), which are crucial regulators of malignant tu-
mors (Ishigami et al., 1998; Tahmatzopoulos et al., 2004; Ji-
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ang and Liu, 2008). Our findings suggest that LKB1 and ME3 
are important regulators of tumor cell proliferation, controlling 
key biological processes such as apoptosis, cell growth, and 
tumorigenesis. We also identified ME3 as a novel binding 
partner of LKB1, and our results suggest that LKB1 and ME3 
cooperate to regulate apoptosis and contribute to the tumor 
suppressive function of LKB1.

In summary, our study provides important new insights into 
the role of LKB1 and ME3 in tumor suppression and their po-
tential as therapeutic targets in ovarian tumorigenesis. Future 
studies can focus on further elucidating the molecular mecha-
nisms underlying LKB1-mediated signaling pathways through 
its interaction with ME3.
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