DOI QR코드

DOI QR Code

Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics

  • Bae, Sojung (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University) ;
  • Lee, Jeong Yoon (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University) ;
  • Myoung, Jinjong (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University)
  • 투고 : 2020.12.04
  • 심사 : 2020.12.15
  • 발행 : 2020.12.28

초록

Chikungunya virus (CHIKV) was first identified in 1952 as a causative agent of outbreaks. CHIKV is transmitted by two mosquito species, Aedes aegypti and A. albopictus. Symptoms after CHIKV infection in human are typically fever and joint pain, but can also include headache, muscle pain, joint swelling, polyarthralgia, and rash. CHIKV is an enveloped single-stranded, positive-sense RNA virus with a diameter of approximately 70 nm. The pathogenesis of CHIKV infection and the mechanism by which the virus evades the innate immune system remain poorly understood. Moreover, little is known about the roles of CHIKV-encoded genes in the viral evasion of host immune responses, especially type I interferon (IFN) responses. Therefore, in the present study, we screened CHIKV-encoded genes for their regulatory effect on the activation of nuclear factor kappa B (NF-κB), a critical transcription factor for the optimal activation of IFN-β. Among others, non-structural protein 2 (nsP2) strongly inhibited melanoma differentiation-associated protein 5 (MDA5)-mediated induction of the NF-κB pathway in a dose-dependent manner. Elucidation of the detailed mechanisms of nsP2-mediated inhibition of the MDA5/RIG-I signaling pathway is anticipated to contribute to the development of virus-specific therapeutics against CHIKV infection.

키워드

참고문헌

  1. Bae S, Lee JY, Myoung J. 2019. Chikungunya virus-encoded nsP2, E2 and E1 strongly antagonize the interferon-beta signaling pathway. J. Microbiol. Biotechnol. 29: 1852-1859. https://doi.org/10.4014/jmb.1910.10014
  2. Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A, Schnettler E, et al. 2017. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis. 17: e107-e117. https://doi.org/10.1016/S1473-3099(16)30385-1
  3. Bustos Carrillo F, Collado D, Sanchez N, Ojeda S, Lopez Mercado B, Burger-Calderon R, et al. 2019. Epidemiological evidence for lineage-specific differences in the risk of inapparent chikungunya virus infection. J. Virol. 93: e1622-18.
  4. Zhang YN, Deng CL, Li JQ, Li N, Zhang QY, Ye HQ, et al. 2019. Infectious chikungunya virus (CHIKV) with a complete capsid deletion: a new approach for a CHIKV vaccine. J. Virol. 93: e00504-19.
  5. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
  6. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
  7. Lee JY, Bae S, Myoung J. 2019. Middle east respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
  8. Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, et al. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141: 315-330. https://doi.org/10.1016/j.cell.2010.03.029
  9. Lee JY, Kim SJ, Myoung J. 2019. Middle east respiratory syndrome coronavirus-encoded ORF8b inhibits RIG-I-like receptors in a differential mechanism. J. Microbiol. Biotechnol. 29: 2014-2021. https://doi.org/10.4014/jmb.1911.11024
  10. Myoung J, Lee JY, Min KS. 2019. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway. J. Microbiol. 57: 1126-1131. https://doi.org/10.1007/s12275-019-9478-8
  11. Myoung J, Lee SA, Lee HR. 2019. Beyond viral interferon regulatory factors: Immune evasion strategies. J. Microbiol. Biotechnol. 29: 1873-1881. https://doi.org/10.4014/jmb.1910.10004
  12. Ramos HJ, Gale M, Jr. 2011. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr. Opin. Virol. 1: 167-176. https://doi.org/10.1016/j.coviro.2011.04.004
  13. Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
  14. Park BJ, Jung ST, Choi CS, Myoung J, Ahn HS, Han SH, et al. 2018. Pathogenesis of human norovirus genogroup II genotype 4 in post-weaning gnotobiotic pigs. J. Microbiol. Biotechnol. 28: 2133-2140. https://doi.org/10.4014/jmb.1809.09061
  15. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
  16. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
  17. Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, et al. 2020. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol. 30: 313-324. https://doi.org/10.4014/jmb.2003.03011
  18. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.1905.05061
  19. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, et al. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA 104: 582-587. https://doi.org/10.1073/pnas.0606699104
  20. Areschoug T, Gordon S. 2008. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Contrib. Microbiol. 15: 45-60. https://doi.org/10.1159/000135685
  21. Brisse M, Ly H. 2019. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 10: 1586. https://doi.org/10.3389/fimmu.2019.01586
  22. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682. https://doi.org/10.1016/j.cell.2005.08.012
  23. Hinz M, Scheidereit C. 2014. The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep. 15: 46-61. https://doi.org/10.1002/embr.201337983
  24. Abe T, Barber GN. 2014. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NFkappaB activation through TBK1. J. Virol. 88: 5328-5341. https://doi.org/10.1128/JVI.00037-14
  25. Zhang L, Alter HJ, Wang H, Jia S, Wang E, Marincola FM, et al. 2013. The modulation of hepatitis C virus 1a replication by PKR is dependent on NF-kB mediated interferon beta response in Huh7.5.1 cells. Virology 438: 28-36. https://doi.org/10.1016/j.virol.2013.01.015
  26. Dong XY, Tang SQ. 2016. Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-kappaB signaling pathway. Virol. J. 13: 101. https://doi.org/10.1186/s12985-016-0545-z
  27. Garg RR, Jackson CB, Rahman MM, Khan AR, Lewin AS, McFadden G. 2019. Myxoma virus M013 protein antagonizes NF-kappaB and inflammasome pathways via distinct structural motifs. J. Biol. Chem. 294: 8480-8489. https://doi.org/10.1074/jbc.RA118.006040
  28. Akhrymuk I, Kulemzin SV, Frolova EI. 2012. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J. Virol. 86: 7180-7191. https://doi.org/10.1128/JVI.00541-12
  29. Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, et al. 2010. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J. Virol. 84: 10877-10887. https://doi.org/10.1128/JVI.00949-10
  30. Breakwell L, Dosenovic P, Karlsson Hedestam GB, D'Amato M, Liljestrom P, Fazakerley J, et al. 2007. Semliki Forest virus nonstructural protein 2 is involved in suppression of the type I interferon response. J. Virol. 81: 8677-8684. https://doi.org/10.1128/JVI.02411-06
  31. Akhrymuk I, Frolov I, Frolova EI. 2016. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode. Virology 487: 230-241. https://doi.org/10.1016/j.virol.2015.09.023
  32. Strauss JH, Strauss EG. 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58: 491-562. https://doi.org/10.1128/MR.58.3.491-562.1994
  33. Kuo SC, Chen YJ, Wang YM, Tsui PY, Kuo MD, Wu TY, et al. 2012. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion. J. Biomed. Sci. 19: 44. https://doi.org/10.1186/1423-0127-19-44
  34. Levine JR, Prescott J, Brown KS, Best SM, Ebihara H, Feldmann H. 2010. Antagonism of type I interferon responses by new world hantaviruses. J. Virol. 84: 11790-11801. https://doi.org/10.1128/JVI.00916-10
  35. Ngueyen TTN, Kim SJ, Lee JY, Myoung J. 2019. Zika Virus proteins NS2A and NS4A Are major antagonists that reduce IFN-beta promoter activity induced by the MDA5/RIG-I signaling pathway. J. Microbiol. Biotechnol. 29: 1665-1674. https://doi.org/10.4014/jmb.1909.09017
  36. Lee JY, Nguyen TTN, Myoung J. 2020. Zika Virus-encoded NS2A and NS4A strongly downregulate NF-kappaB promoter activity. J. Microbiol. Biotechnol. 30: 1651-1658. https://doi.org/10.4014/jmb.2011.11003

피인용 문헌

  1. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors vol.10, pp.4, 2020, https://doi.org/10.3390/pathogens10040448
  2. The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response vol.95, pp.23, 2020, https://doi.org/10.1128/jvi.01155-21