DOI QR코드

DOI QR Code

Inhibitory effects of Oxya chinensis sinuosa ethanol extract on RANKL-induced osteoclast differentiation

  • Ra-Yeong Choi (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Bong Sun Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sohyun Park (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Minchul Seo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Joon Ha Lee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • HaeYong Kweon (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • In-Woo Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2023.10.26
  • 심사 : 2023.12.17
  • 발행 : 2024.03.31

초록

The rice field grasshopper, Oxya chinensis sinuosa (OC), has traditionally been utilized in Korea for various purposes; however, its potential benefits in the context of osteoporosis remain unclear. The results revealed that OC ethanol extract (OCE) significantly inhibited the formation and activity of tartrate-resistant acid phosphatase (TRAP)-positive cells in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, OCE, at concentrations ranging from 100 to 400 ㎍/mL, demonstrated a dose-dependent reduction in the protein expression of osteoclast-specific markers, including nuclear factor of activated T cell cytoplasmic 1, c-Src, and TRAP, when compared to RANKL stimulation alone. Additionally, OCE significantly inhibited RANKL-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not the activation of extracellular signal-regulated kinase. Collectively, these results indicate that OCE suppresses osteoclastogenesis by attenuating the phosphorylation of p38 MAPK and JNK. Consequently, these findings suggest that OCE holds promise for the prevention of osteoporosis.

키워드

과제정보

This work was supported by the Rural Development Administration, Republic of Korea (Project No. PJ01563203).

참고문헌

  1. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 18, e8. https://doi.org/10.4110/in.2018.18.e8
  2. Baek JM, Park S, Cheon Y, Ahn S, Lee MS, Oh J, et al. (2015) Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway. Biochem Biophys Res Commun 461, 334-341. https://doi.org/10.1016/j.bbrc.2015.04.034
  3. Bahuguna A, Khaket TP, Bajpai VK, Shukla S, Park I, Na M, et al. (2022) N-Acetyldopamine dimers from Oxya chinensis sinuosa attenuates lipopolysaccharides induced inflammation and inhibits cathepsin C activity. Comput Struct Biotechnol J 20, 1177-1188. https://doi.org/10.1016/j.csbj.2022.02.011
  4. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  5. Cheng Y, Liu H, Li J, Ma Y, Song C, Wang Y, et al. (2022) Monascin abrogates RANKL-mediated osteoclastogenesis in RAW264.7 cells via regulating MAPKs signaling pathways. Front Pharmacol 13, 950122. https://doi.org/10.3389/fphar.2022.950122
  6. Im A, Park I, Ji KY, Lee JY, Kim KM, Na M, et al. (2019) Protective effects of Oxya chinensis sinuosa Mishchenko against ultraviolet B-induced photodamage in hairless mice. BMC Complement Altern Med 19, 286. https://doi.org/10.1186/s12906-019-2692-4
  7. Kim HJ, Kang SJ, Kim SG, Kim JE, Koo HY (2015) Antioxidant activity and antimicrobial activity of the grasshopper, Oxya chinensis sinuosa. J Seric Entomol Sci 53, 130-134. https://doi.org/10.7852/jses.2015.53.2.130
  8. Kim I, Markkandan K, Lee JH, Subramaniyam S, Yoo S, Park J, et al. (2016) Transcriptome profiling and in silico analysis of the antimicrobial peptides of the Grasshopper Oxya chinensis sinuosa. J Microbiol Biotechnol 26, 1863-1870. https://doi.org/10.4014/jmb.1608.08029
  9. Kim WS, Han JM, Song H, Byun E, Seo HS, Byun E (2020) Edible Oxya chinensis sinuosa-derived protein as a potential nutraceutical for anticancer immunity improvement. Nutrients 12, 3236. https://doi.org/10.3390/nu12113236
  10. Lampiasi N, Russo R, Kireev I, Strelkova O, Zhironkina O, Zito F (2021) Osteoclasts differentiation from murine RAW 264.7 cells stimulated by RANKL: timing and behavior. Biology 10, 117. https://doi.org/10.3390/biology10020117
  11. Lee K, Kim J, Kim E, Yeom M, Jung H, Sohn Y (2019) Water extract of Cnidii rhizoma suppresses RANKL-induced osteoclastogenesis in RAW 264.7 cell by inhibiting NFATc1/c-Fos signaling and prevents ovariectomized bone loss in SD-rat. BMC Complement Altern Med 19, 207. https://doi.org/10.1186/s12906-019-2611-8
  12. Lee NK (2017) RANK signaling pathways and key molecules inducing osteoclast differentiation. Biomed Sci Lett 23, 295-302. https://doi.org/10.15616/BSL.2017.23.4.295
  13. Lee W, Lee H, Kim M, Choi J, Kim K, Hwang JS, et al. (2017) Evaluation of novel factor Xa inhibitors from Oxya chinensis sinuosa with anti-platelet aggregation activity. Sci Rep 7, 7934. https://doi.org/10.1038/s41598-017-08330-1.
  14. Liu T, Jiang L, Xiang Z, Li J, Zhang Y, Xiang T, et al. (2022) Tereticornate A suppresses RANKL-induced osteoclastogenesis via the downregulation of c-Src and TRAF6 and the inhibition of RANK signaling pathways. Biomed Pharmacother 151, 113140. https://doi.org/10.1016/j.biopha.2022.113140
  15. Matsubara T, Addison WN, Kokabu S, Neff L, Horne W, Gori F, et al., (2021) Characterization of unique functionalities in c-Src domains required for osteoclast podosome belt formation. J Biol Chem 296, 100790. https://doi.org/10.1016/j.jbc.2021.100790
  16. Orecchini E, Mondanelli G, Orabona C, Volpi C, Adorisio S, Calvitti M, et al. (2021) Artocarpus tonkinensis extract inhibits LPS-triggered inflammation markers and suppresses RANKL-induced osteoclastogenesis in RAW264.7. Front Pharmacol 11, 593829. https://doi.org/10.3389/fphar.2020.593829
  17. Park JE, Han JS (2020) Oxya chinensis sinuosa Mishchenko extract: potent glycosidase inhibitor alleviates postprandial hyperglycemia in diabetic mice. J Life Sci 30, 1054-1062. https://doi.org/10.5352/JLS.2020.30.12.1054
  18. Saiki M, Takemoto N, Nagata M, Matsumoto M, Amen Y, Wang D, et al. (2021) Analysis of antioxidant and antiallergic active components extracted from the edible insect Oxya yezoensis. Nat Prod Commun 16, https://doi.org/10.1177/1934578X211023363
  19. Song C, Yang X, Lei Y, Zhang Z, Smith W, Yan J, et al. (2019) Evaluation of efficacy on RANKL induced osteoclast from RAW264. 7 cells. J Cell Physiol 234, 11969-11975. https://doi.org/10.1002/jcp.27852
  20. Takayanagi H (2007) The role of NFAT in osteoclast formation. Ann N Y Acad Sci 1116, 227-237. https://doi.org/10.1196/annals.1402.071
  21. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901. https://doi.org/10.1016/s1534-5807(02)00369-6
  22. Tanaka H, Tanabe N, Shoji M, Suzuki N, Katono T, Sato S, et al. (2006) Nicotine and lipopolysaccharide stimulate the formation of osteoclast-like cells by increasing macrophage colony-stimulating factor and prostaglandin E2 production by osteoblasts. Life Sci 78, 1733-1740. https://doi.org/10.1016/j.lfs.2005.08.017
  23. Yoon Y, Chung MY, Hwang J, Goo T, Ahn M, Lee Y, et al. (2014) Anti-inflammatory effect of Oxya chinensis sinuosa ethanol extract in LPS-induced RAW 264.7 cells. J Life Sci 24, 370-376. https://doi.org/10.5352/JLS.2014.24.4.370
  24. Zeng XZ, He LG, Wang S, Wang K, Zhang YY, Tao L, et al. (2016) Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 37, 255-263. https://doi.org/10.1038/aps.2015.85