Acknowledgement
This work was supported by the Rural Development Administration, Republic of Korea (Project No. PJ01563203).
References
- Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 18, e8. https://doi.org/10.4110/in.2018.18.e8
- Baek JM, Park S, Cheon Y, Ahn S, Lee MS, Oh J, et al. (2015) Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway. Biochem Biophys Res Commun 461, 334-341. https://doi.org/10.1016/j.bbrc.2015.04.034
- Bahuguna A, Khaket TP, Bajpai VK, Shukla S, Park I, Na M, et al. (2022) N-Acetyldopamine dimers from Oxya chinensis sinuosa attenuates lipopolysaccharides induced inflammation and inhibits cathepsin C activity. Comput Struct Biotechnol J 20, 1177-1188. https://doi.org/10.1016/j.csbj.2022.02.011
- Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Cheng Y, Liu H, Li J, Ma Y, Song C, Wang Y, et al. (2022) Monascin abrogates RANKL-mediated osteoclastogenesis in RAW264.7 cells via regulating MAPKs signaling pathways. Front Pharmacol 13, 950122. https://doi.org/10.3389/fphar.2022.950122
- Im A, Park I, Ji KY, Lee JY, Kim KM, Na M, et al. (2019) Protective effects of Oxya chinensis sinuosa Mishchenko against ultraviolet B-induced photodamage in hairless mice. BMC Complement Altern Med 19, 286. https://doi.org/10.1186/s12906-019-2692-4
- Kim HJ, Kang SJ, Kim SG, Kim JE, Koo HY (2015) Antioxidant activity and antimicrobial activity of the grasshopper, Oxya chinensis sinuosa. J Seric Entomol Sci 53, 130-134. https://doi.org/10.7852/jses.2015.53.2.130
- Kim I, Markkandan K, Lee JH, Subramaniyam S, Yoo S, Park J, et al. (2016) Transcriptome profiling and in silico analysis of the antimicrobial peptides of the Grasshopper Oxya chinensis sinuosa. J Microbiol Biotechnol 26, 1863-1870. https://doi.org/10.4014/jmb.1608.08029
- Kim WS, Han JM, Song H, Byun E, Seo HS, Byun E (2020) Edible Oxya chinensis sinuosa-derived protein as a potential nutraceutical for anticancer immunity improvement. Nutrients 12, 3236. https://doi.org/10.3390/nu12113236
- Lampiasi N, Russo R, Kireev I, Strelkova O, Zhironkina O, Zito F (2021) Osteoclasts differentiation from murine RAW 264.7 cells stimulated by RANKL: timing and behavior. Biology 10, 117. https://doi.org/10.3390/biology10020117
- Lee K, Kim J, Kim E, Yeom M, Jung H, Sohn Y (2019) Water extract of Cnidii rhizoma suppresses RANKL-induced osteoclastogenesis in RAW 264.7 cell by inhibiting NFATc1/c-Fos signaling and prevents ovariectomized bone loss in SD-rat. BMC Complement Altern Med 19, 207. https://doi.org/10.1186/s12906-019-2611-8
- Lee NK (2017) RANK signaling pathways and key molecules inducing osteoclast differentiation. Biomed Sci Lett 23, 295-302. https://doi.org/10.15616/BSL.2017.23.4.295
- Lee W, Lee H, Kim M, Choi J, Kim K, Hwang JS, et al. (2017) Evaluation of novel factor Xa inhibitors from Oxya chinensis sinuosa with anti-platelet aggregation activity. Sci Rep 7, 7934. https://doi.org/10.1038/s41598-017-08330-1.
- Liu T, Jiang L, Xiang Z, Li J, Zhang Y, Xiang T, et al. (2022) Tereticornate A suppresses RANKL-induced osteoclastogenesis via the downregulation of c-Src and TRAF6 and the inhibition of RANK signaling pathways. Biomed Pharmacother 151, 113140. https://doi.org/10.1016/j.biopha.2022.113140
- Matsubara T, Addison WN, Kokabu S, Neff L, Horne W, Gori F, et al., (2021) Characterization of unique functionalities in c-Src domains required for osteoclast podosome belt formation. J Biol Chem 296, 100790. https://doi.org/10.1016/j.jbc.2021.100790
- Orecchini E, Mondanelli G, Orabona C, Volpi C, Adorisio S, Calvitti M, et al. (2021) Artocarpus tonkinensis extract inhibits LPS-triggered inflammation markers and suppresses RANKL-induced osteoclastogenesis in RAW264.7. Front Pharmacol 11, 593829. https://doi.org/10.3389/fphar.2020.593829
- Park JE, Han JS (2020) Oxya chinensis sinuosa Mishchenko extract: potent glycosidase inhibitor alleviates postprandial hyperglycemia in diabetic mice. J Life Sci 30, 1054-1062. https://doi.org/10.5352/JLS.2020.30.12.1054
- Saiki M, Takemoto N, Nagata M, Matsumoto M, Amen Y, Wang D, et al. (2021) Analysis of antioxidant and antiallergic active components extracted from the edible insect Oxya yezoensis. Nat Prod Commun 16, https://doi.org/10.1177/1934578X211023363
- Song C, Yang X, Lei Y, Zhang Z, Smith W, Yan J, et al. (2019) Evaluation of efficacy on RANKL induced osteoclast from RAW264. 7 cells. J Cell Physiol 234, 11969-11975. https://doi.org/10.1002/jcp.27852
- Takayanagi H (2007) The role of NFAT in osteoclast formation. Ann N Y Acad Sci 1116, 227-237. https://doi.org/10.1196/annals.1402.071
- Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901. https://doi.org/10.1016/s1534-5807(02)00369-6
- Tanaka H, Tanabe N, Shoji M, Suzuki N, Katono T, Sato S, et al. (2006) Nicotine and lipopolysaccharide stimulate the formation of osteoclast-like cells by increasing macrophage colony-stimulating factor and prostaglandin E2 production by osteoblasts. Life Sci 78, 1733-1740. https://doi.org/10.1016/j.lfs.2005.08.017
- Yoon Y, Chung MY, Hwang J, Goo T, Ahn M, Lee Y, et al. (2014) Anti-inflammatory effect of Oxya chinensis sinuosa ethanol extract in LPS-induced RAW 264.7 cells. J Life Sci 24, 370-376. https://doi.org/10.5352/JLS.2014.24.4.370
- Zeng XZ, He LG, Wang S, Wang K, Zhang YY, Tao L, et al. (2016) Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 37, 255-263. https://doi.org/10.1038/aps.2015.85