• Title/Summary/Keyword: nrDNA-ITS

Search Result 69, Processing Time 0.03 seconds

Genetic diversity of Kalopanax pictus populations in Korea based on the nrDNA ITS sequence

  • Sun, Yan-Lin;Lee, Hak-Bong;Kim, Nam-Young;Park, Wan-Geun;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • $Kalopanax$ $pictus$ is a long-lived deciduous perennial tree in the family Araliaceae mainly distributed in the East Asia. In Korea, this species is of ecological and medical importance. Because typical populations of this species are small and distributed in patches, $K.$ $pictus$ has been considered as a narrow habitat species. To understand the genetic diversity and population structure of this species, the sequence variation of the nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) region was analyzed among 18 different $K.$ $pictus$ populations in the present investigation. The nrDNA ITS sequences of Korean populations investigated in this study showed identical of 616 bp in length, and no any nucleotide variation was found in the entire nrDNA ITS region sequence. This result suggested that the $K.$ $pictus$ populations in Korea might belong to the same isolate, and no mutation was found in the nrDNA ITS region. Compared with other known ITS sequence sources from $K.$ $pictus$ populations, only four variable nucleotide sites were found within the entire ITS region. Very narrow genetic diversity appearing in the population level of $K.$ $pictus$ makes us hypothesize that their relatively isolated habitats. The long-lived traits might be one main reason. However, another probability was that the nr-DNA ITS region might be noneffective in classifying populations of $K.$ $pictus$. Thus, to further understand the phylogenetic relationship of $K.$ $pictus$ populations, more samplings should be performed based on more DNA sequences.

Authentication of Traded Traditional Medicine Ogapi Based on Nuclear Ribosomal DNA Internal Transcribed Spacers and Chloroplast DNA Sequences (nrDNA ITS 및 엽록체 DNA 염기서열 분석에 의한 유통 한약재 오가피 판별)

  • Kim, Jeong Hun;Byeon, Ji Hui;Park, Hyo Seop;Lee, Jeong Hoon;Lee, Sang Won;Cha, Sun Woo;Cho, Joon Hyeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.489-499
    • /
    • 2015
  • Background : Plants belonging to 5 species of the genus Eleutherococcus are currently distributed in the Korean peninsula. The traditional medicine 'Ogapi', derived from Eleutherococcus sessiliflorus and other related species, and 'Gasiogapi', derived from Eleutherococcus senticosus, are frequently mixed up and marketed. Therefore, accurated identification of their origins in urgently required. Methods and Results : Candidate genes from nuclear ribosomal DNA (nrDNA) and chloroplast DNA (cpDNA) of Eleutherococcus plants were analyzed. Whereas the nrDNA-internal transcribed spacer (ITS) regions were useful in elucidating the phylogenetic relationships among the plants, the cpDNA regions were not as effective. Therefore, a combined analysis with nrDNA-ITS was performed. Various combinations of nrDNA and matK were effective for discriminating among the plants. However, the matK and rpoC1 combination was ineffective for discriminating among some species. Based on these results, it was found that OG1, OG4, OG5, OG7, GS1, GS2, and GS3 were derived from E. sessiliflorus. In particular, it was confirmed that GS1, GS2, and GS3 were not derived from E. senticosus. However, more samples need to be analyzed because identification of the origins of OG2, OG3, OG6 and GS4 was not possible. Conclusion : The ITS2, ITS5a, and matK combination was the most effective in identifying the phylogenetic relationship among Eleutherococcus plants and traditional medicines based on Eleutherococcus.

Molecular Authentication of Schisandrae Fructus and Analysis of Phylogenetic Relationship based on nrDNA-ITS sequences (nrDNA-ITS 분자마커를 이용한 오미자(五味子) 종 감별 및 기원분석 -ITS 염기서열을 이용한 오미자(五味子) 감별-)

  • Moon, Byeong-Cheol;Ji, Yun-Ui;Seo, Hyeong-Seok;Lee, A-Young;Chun, Jin-Mi;Kim, Ho-Kyoung
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • Objectives : The original plant species of Schisandrae Fructus (O-mi-ja) is prescribed as Schisandra chinensis $B_{AILL.}$, in Korea, but S. chinensis $B_{AILL.}$ and S. sphenanthera $R_{EHD.}$ et $W_{ILS.}$ in China. Moreover, fruit of several other species in genus Schisandra also have been used as the same herbal medicines. To develop a reliable method for correct identification of Schisandrae Fructus and to evaluate the phylogenetic relationship of S. chinensis and its related species, we analyzed internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA (nrDNA). Methods : Twenty-four plant samples of three Schisandra species and one Kadsura species, S. chinensis $B_{AILL.}$, S. spenanthera $R_{EHD.}$ et $W_{ILS.}$, S. nigra $M_{ax.}$ and Kadsura japonica $D_{UNAL}$ were collected from each different native habitate and farm in Korea and China. The nrDNA-ITS region of each samples were amplified using ITS1 and ITS4 primer and nucleotide sequences were determined after sub-cloning into the pGEM-Teasy vector. Authentic marker nucleotides were estimated by the analysis of ClastalW based on the entire nrDNA-ITS sequence. Results : In comparative analysis of the nrDNA-ITS sequences, we found specific nucleotide sequences including indels (insertions and deletions) and substitutions to distinguish C. chinensis, S. spenanthera, S. nigra, and K. japonica. These sequence differences at corresponding positions are avaliable nucleotide markers to determine the botanical origin of O-mi-ja. Moreover, we evaluated the phylogenetic relationship of four plant species by the analysis of nrDNA-ITS sequences. Conclusions : These marker nucleotides would be useful to identify the official herbal medicines by the providing of definitive information that can identify each plant species and distinguish it from unauthentic adulterants for O-mi-ja.

Molecular Identification of Zoysia japonica and Zoysia sinica (Zoysia Species) Based on ITS Sequence Analyses and CAPS (ITS 염기서열 분석 및 CAPS를 이용한 조이시아 속(Zoysia) 들잔디와 갯잔디의 구별)

  • Hong, Min-Ji;Yang, Dae-Hwa;Jeong, Ok-Cheol;Kim, Yang-Ji;Park, Mi-Young;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Park, Shin-Young;Yang, Paul;Song, Pill-Soon;Ko, Suk-Min;Lee, Hyo-Yeon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.344-360
    • /
    • 2017
  • Zoysiagrasses are important turf plants used for school playgrounds, parks, golf courses, and sports fields. The two most popular zoysiagrass species are Zoysia japonica and Zoysia sinica. These are widely distributed across different growing zones and are morphologically distinguishable from each other; however, it is phenotypically difficult to differentiate those that grow along the coastal line from those in beach area habitats. A combination of morphological and molecular approaches is desirable to efficiently identify these two plant cultivars. In this study, we used a rapid identification system based on DNA barcoding of the nrDNA-internal transcribed spacer (ITS) regions. The nrDNA-ITS regions of ITS1, 5.8S nrDNA, and ITS2 from Z. japonica, Z. sinica, Agrostis stolonifera, and Poa pratensis were DNA barcoded to classify these grasses according to their molecular identities. The nrDNA-ITS sequences of these species were found at 686 bp, 687 bp, 683 bp, and 681 bp, respectively. The size of ITS1 ranged from 248 to 249 bp, while ITS2 ranged from 270 to 274 bp. The 5.8S coding region ranged from 163 - 164bp. Between Z. japonica and Z. sinica, nineteen (2.8%) nucleotide sites were variable, and the G+C content of the ITS region ranged from 55.4 to 63.3%. Substitutions and insert/deletion (indel) sites in the nrDNA-ITS sequence of Z. japonica and Z. sinica were converted to cleaved amplified polymorphic sequence (CAPS) markers, and applied to the Zoysia grasses sampled to verify the presence of these markers. Among the 62 control and collected grass samples, we classified three groups: 36 Z. japonica, 22 Z. sinica, and 4 Z. japonica/Z. sinica hybrids. Morphological classification revealed only two groups; Z. japonica and Z. sinica. Our results suggest that used of the nrDNA-ITS barcode region and CAPS markers can be used to distinguish between Z. japonica and Z. sinica at the species level.

Molecular Phylogenetic Position of Adenophora racemosa, an Endemic Species in Korea (한국특산종 외대잔대(Adenophora racemosa)의 분자계통학적 위치)

  • Ji, Yun-Ui;Moon, Byeong-Cheol;Lee, A-Yeong;Chun, Jin-Mi;Choo, Byung-Kil;Kim, Ho-Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.379-388
    • /
    • 2010
  • Adenophora racemosa is recently reported as a new Korean endemic plant species. However, the phylogenetic relationship of this genus has been controversial due to the morphological similarity and frequent morphological change of aerial parts. To verify the phylogenetic position of Adenophora racemosa and phylogenetic relationship of genus Adenophora, we analyzed the internal transcribed spacer (ITS) sequence of nuclear ribosomal DNA (nrDNA) and random amplified polymorphic DNA (RAPD) using 21 individual of 6 Adenophora species, A. verticillata, A. divaricata, A. racemosa, A. remotiflora, A. stricata and A. tetraphylla. In comparative analysis of the nrDNA-ITS sequences, we could not found not only any species specific nucleotide sequence but also could not estimated their inter or intra species. In the phylogenic analysis based on the RAPD derived DNA polymorphism, Adenophora species were classified into four groups by clustering analysis of the UPGMA. These results suggest that the DNA fingerprinting based on RAPD is more suitable than nrDNA-ITS sequence for the phylogenetic analysis of Adenophora species.

Genetic diversity and phylogenetic analysis of genus Paeonia based on nuclear ribosomal DNA ITS sequence

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • The genus Paeonia belongs to the family Paeoniaceae having significant medicinal and ornamental importance. The present investigation was undertaken with an aim to understand phylogenetic relationships of three Paeonia species (P. lactiflora, P. obovata, and P. suffruticosa) that are widely distributed in China, Korea, and Japan, using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequence and to compare the phylogeny results with investigations reported earlier using existed sequences of the same species. The size variation obtained among sequenced nrDNA ITS region was narrow and ranged from 722 to 726 bp. The highest interspecific genetic distance (GD) was found between P. lactiflora and P. suffruticosa or P. obovata. The phylogram obtained using our nrDNA ITS sequences showed non-congruence with previous hypothesis of the phylogeny between section Paeonia and section Moutan of genus Paeonia. This result was supported by the phylogenetic relations showed in the phylogram constructed with existed sequences in NCBI. The present study suggested that P. obovata belonging to section Paeonia was phylogenetically closer to P. suffruticosa representing section Moutan of genus Paeonia than P. lactiflora belonging to section Paeonia. The main reason of the paraphyly of section Paeonia is thought to be nucleotide additivity directly caused by origin hybridization. This study provides more sequence sources of genus Paeonia, and will help for further studies in intraspecies population, and their phylogentic analysis and molecular evolution.

Genetic Variation and Phylogenetic Relationship of Korean Ginseng based on cpDNA trnL-F, nrDNA ITS and ETS Sequences (엽록체 DNA trnL-F 및 핵리보조옴 DNA ITS, ETS 염기서열에 의한 고려인삼의 유전적 변이와 계통학적 유연관계)

  • Bang Chan Kuk;Kim Ju Hwan;Baek Myeong Hyun;Kim Chang Sik;Um Dong Myeong;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1699-1709
    • /
    • 2004
  • Genetic variations and relationship based on the sequences of cpDNA trnL-F gene, nrDNA ITS and ETS region among the twenty four taxa including Panax ginseng C.A. Meyer and its related species were investigated. And taxonomic status and molecular phylogenetic relationship between P. ginseng and related groups were discussed. Molecular systematic data from cpDNA and nrDNA sequences were very useful to elucidate the genetic variations and relationships among the treated taxa. It was found that P. ginseng is the independent unique species with distinct genetic limitation from the related species such as P. quinquefolius, P. japonicum, P. notoginseng and P. pseudoginseng. P. ginseng including cultivated types as well as wild ones formed monophyletic group with high genetic similarities. P. quinquefolius and P. japonicum were the most related sister groups of P. ginseng based on the molecular phylogenetic results in this study.

A phylogenetic analysis of the genus Pilea (Urticaceae) using nrDNA and cpDNA sequences (한국산 물통이속(Pilea) 식물의 nrDNA, cpDNA를 통한 계통분석)

  • Moon, Ae-Ra;Park, Jeong-Mi;Jang, Chang-Gee
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.2
    • /
    • pp.158-168
    • /
    • 2015
  • A study of the genus Pilea in Korea including five taxa was carried out using molecular phylogenetic methods. The majority of members of the genus Pilea in Korea are annual herbs, and they live in moist habitats, flowering in summer and fruiting in autumn. The results of a phylogenetic analysis using nrDNA and cpDNA supported the recognition of P. japonica, P. peploides, and P. taquetii. Pilea taquetii from Mt. Sanbangsan in Jeju was nested within P. hamaoi and P. mongolica clade instead of the P. taquetii clade, with P. taquetii from Mt. Jirisan also separated from the P. taquetii clade. This indicates that the separation is not geographical isolation, but is instead related to taxonomic problems. Therefore, further study of the P. taquetii group is necessary.

Molecular identification of medicinal herbs, Oldenlandia diffusa and Oldenlandia corymbosa based on nrDNA ITS region sequence

  • Sun, Yan-Lin;Wang, Dong;Yeom, Myung-Hun;Kim, Duck-Hee;Kim, Han-Gon;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.301-307
    • /
    • 2011
  • The medicinal herb Oldenlandia diffusa is known as a folk medicine for the treatment of hepatitis, sore throat, appendicitis, malignant tumors and urethral infection in Southern China and Korea. Another species O. corymbosa, is also used for the therapy of the similar conditions, however, only O. diffusa is referred to the medicinal herb by Chinese Pharmacopoeia. Due to their similar morphology, O. diffusa and O. corymbosa are often misidentified. To easily identify O. diffusa from O. corymbosa, the phylogenetic utility of nuclear ribosomal DNA (nrDNA) internal transcribed spacers (ITS) were investigated among different O. diffusa and O. corymbosa populations in Korea. The nrDNA ITS sequence of O. diffusa contained 791 bp, with GenBank accession number of JF837601-JF837602. The nrDNA ITS sequence of O. corymbosa was 785-786 bp, with GenBank accession number of JF837603-JF837611. The results showed that there are some certain divergences in the ITS region sequence between both species, even among different populations of the same species. Particularly, O. corymbosa ST-4 population showed the highest dissimilarity of the ITS region sequence with other nine populations of O. corymbosa and two populations of O. diffusa. This consequence makes us further understand the molecular diversification between O. corymbosa and O. diffusa, and help to promote the correct use and safety.

The complete plastid genome and nuclear ribosomal transcription unit sequences of Spiraea prunifolia f. simpliciflora (Rosaceae)

  • Jeongjin CHOI;Wonhee KIM;Jee Young PARK;Jong-Soo KANG;Tae-Jin YANG
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.32-37
    • /
    • 2023
  • Spiraea prunifolia f. simpliciflora Nakai is a perennial shrub widely used for horticultural and medicinal purposes. We simultaneously obtained the complete plastid genome (plastome) and nuclear ribosomal gene transcription units, 45S nuclear ribosomal DNA (nrDNA) and 5S nrDNA of S. prunifolia f. simpliciflora, using Illumina short-read data. The plastome is 155,984 bp in length with a canonical quadripartite structure consisting of 84,417 bp of a large single-copy region, 18,887 bp of a short single-copy region, and 26,340 bp of two inverted repeat regions. Overall, a total of 113 genes (79 protein-coding genes, 30 tRNAs, and four rRNAs) were annotated in the plastome. The 45S nrDNA transcription unit is 5,848 bp in length: 1,809 bp, 161 bp, and 3,397 bp for 18S, 5.8S, and 26S, respectively, and 261 bp and 220 bp for internal transcribed spacer (ITS) 1 and ITS 2 regions, respectively. The 5S nrDNA unit is 512 bp, including 121 bp of 5S rRNA and 391 bp of intergenic spacer regions. Phylogenetic analyses showed that the genus Spiraea was monophyletic and sister to the clade of Sibiraea angustata, Petrophytum caespitosum and Kelseya uniflora. Within the genus Spiraea, the sections Calospira and Spiraea were monophyletic, but the sect. Glomerati was nested within the sect. Chamaedryon. In the sect. Glomerati, S. prunifolia f. simpliciflora formed a subclade with S. media, and the subclade was sister to S. thunbergii and S. mongolica. The close relationship between S. prunifolia f. simpliciflora and S. media was also supported by the nrDNA phylogeny, indicating that the plastome and nrDNA sequences assembled in this study belong to the genus Spiraea. The newly reported complete plastome and nrDNA transcription unit sequences of S. prunifolia f. simpliciflora provide useful information for further phylogenetic and evolutionary studies of the genus Spiraea, as well as the family Rosaceae.