DOI QR코드

DOI QR Code

The complete plastid genome and nuclear ribosomal transcription unit sequences of Spiraea prunifolia f. simpliciflora (Rosaceae)

  • Jeongjin CHOI (Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Wonhee KIM (Plant Resources Division, National Institute of Biological Resources) ;
  • Jee Young PARK (Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Jong-Soo KANG (Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Tae-Jin YANG (Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University)
  • Received : 2023.02.13
  • Accepted : 2023.03.22
  • Published : 2023.03.31

Abstract

Spiraea prunifolia f. simpliciflora Nakai is a perennial shrub widely used for horticultural and medicinal purposes. We simultaneously obtained the complete plastid genome (plastome) and nuclear ribosomal gene transcription units, 45S nuclear ribosomal DNA (nrDNA) and 5S nrDNA of S. prunifolia f. simpliciflora, using Illumina short-read data. The plastome is 155,984 bp in length with a canonical quadripartite structure consisting of 84,417 bp of a large single-copy region, 18,887 bp of a short single-copy region, and 26,340 bp of two inverted repeat regions. Overall, a total of 113 genes (79 protein-coding genes, 30 tRNAs, and four rRNAs) were annotated in the plastome. The 45S nrDNA transcription unit is 5,848 bp in length: 1,809 bp, 161 bp, and 3,397 bp for 18S, 5.8S, and 26S, respectively, and 261 bp and 220 bp for internal transcribed spacer (ITS) 1 and ITS 2 regions, respectively. The 5S nrDNA unit is 512 bp, including 121 bp of 5S rRNA and 391 bp of intergenic spacer regions. Phylogenetic analyses showed that the genus Spiraea was monophyletic and sister to the clade of Sibiraea angustata, Petrophytum caespitosum and Kelseya uniflora. Within the genus Spiraea, the sections Calospira and Spiraea were monophyletic, but the sect. Glomerati was nested within the sect. Chamaedryon. In the sect. Glomerati, S. prunifolia f. simpliciflora formed a subclade with S. media, and the subclade was sister to S. thunbergii and S. mongolica. The close relationship between S. prunifolia f. simpliciflora and S. media was also supported by the nrDNA phylogeny, indicating that the plastome and nrDNA sequences assembled in this study belong to the genus Spiraea. The newly reported complete plastome and nrDNA transcription unit sequences of S. prunifolia f. simpliciflora provide useful information for further phylogenetic and evolutionary studies of the genus Spiraea, as well as the family Rosaceae.

Keywords

Acknowledgement

This study was supported by the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202206101).

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Bae, J. Y., M. J. Ahn and J. H. Park. 2012. Pharmacognostical studies on the folk medicine. Korean Journal of Pharmacognosy 43: 1-5.
  3. Carver, T., S. R. Harris, M. Berriman, J. Parkhill and J. A. McQuillan. 2012. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28: 464-469. https://doi.org/10.1093/bioinformatics/btr703
  4. Greiner, S., P. Lehwark and R. Bock. 2019. OrganellarGenome-DRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47: W59-W64. https://doi.org/10.1093/nar/gkz238
  5. Hummer, K. E. and J. Janick. 2009. Rosaceae: Taxonomy, economic importance, genomics. In Folta, K. M. & S. E. Gardiner (eds.), Genetics and Genomics of Rosaceae. Springer, New York. Pp. 1-17.
  6. Jang, C. G., N. Na and M. S. Park. 2020. Spiraea prunifolia var. simpliciflora (Nakai) Nakai. In Silvics of Korea. Vol. 5. Korea National Arboretum (ed.), Korea National Arboretum, Pocheon. Pp. 191-200.
  7. Jin, J.-J., W.-B. Yu, J.-B. Yang, Y. Song, C. W. dePamphilis, T.-S. Yi and D.-Z. Li. 2020. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241.
  8. Katoh, K. and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010
  9. Khan, G., F. Zhang, Q. Gao, P.-C. Fu, R. Xing, J. Wang, H. Liu and S. Chen. 2014. Molecular phylogeography and intraspecific divergence of Spiraea alpina (Rosaceae) distributed in the Qinghai-Tibetan Plateau and adjacent regions inferred from nrDNA. Biochemical Systematics and Ecology 57: 278-286. https://doi.org/10.1016/j.bse.2014.08.013
  10. Kim, K., S.-C. Lee, J. Lee, Y. Yu, K. Yang, B.-S. Choi, H.-J. Koh, N. E. Waminal, H.-I. Choi, N.-H. Kim, W. Jang, H.-S. Park, J. Lee, H. O. Lee, H. J. Joh, H. J. Lee, J. Y. Park, S. Perumal, M. Jayakodi, Y. S. Lee, B. Kim, D. Copetti, S. Kim, S. Kim, K.-B. Lim, Y.-D. Kim, J. Lee, K.-S. Cho, B.-S. Park, R. A. Wing and T.-J. Yang. 2015. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Scientific Reports 5: 15655.
  11. Kim, S., J. Suhr, S. Lee, S. Ly and C. Park. 2019. Anti-oxidative activity of water-ethanol fractions from Spiraea prunifolia var. simpliciflora ethanol extract. Korean Journal of Human Ecology 28: 727-737. https://doi.org/10.5934/kjhe.2019.28.6.727
  12. Kostikova, V. A. and N. V. Petrova. 2021. Phytoconstituents and bioactivity of plants of the genus Spiraea L. (Rosaceae): A review. International Journal of Molecular Sciences 22: 11163.
  13. Lagesen, K., P. Hallin, E. A. Rodland, H.-H. Staerfeldt, T. Rognes and D. W. Ussery. 2007. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35: 3100-3108. https://doi.org/10.1093/nar/gkm160
  14. Lee, C. and S.-P. Hong. 2011. Phylogenetic relationships of the rare Korean monotypic endemic genus Pentactina Nakai in the tribe Spiraeeae (Rosaceae) based on molecular data. Plant Systematics and Evolution 294: 159-166. https://doi.org/10.1007/s00606-011-0457-8
  15. Leebens-Mack, J., L. A. Raubeson, L. Cui, J. V. Kuehl, M. H. Fourcade, T. W. Chumley, J. L. Boore, R. K. Jansen and C. W. dePamphilis. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: Sampling one's way out of the Felsenstein zone. Molecular Biology and Evolution 22: 1948-1963. https://doi.org/10.1093/molbev/msi191
  16. Li, H. 2018. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094-3100. https://doi.org/10.1093/bioinformatics/bty191
  17. Long, E. O. and I. B. Dawid. 1980. Repeated genes in eukaryotes. Annual Review of Biochemistry 49: 727-764. https://doi.org/10.1146/annurev.bi.49.070180.003455
  18. Oh, S.-H., L. Chen, S.-H. Kim, Y.-D. Kim and H. Shin. 2010. Phylogenetic relationship of Physocarpus insularis (Rosaceae) endemic on Ulleung Island: Implications for conservation biology. Journal of Plant Biology 53: 94-105. https://doi.org/10.1007/s12374-009-9093-z
  19. Oh, S. M., D. J. Choi, H.-G. Kim, J. W. Lee, Y.-S. Lee, J.-H. Lee, S.-E. Lee, G.-S. Kim, N.-I. Baek and D. Y. Lee. 2018. Neuroprotective effects of phenolic compounds isolated from Spiraea prunifolia var. simpliciflora. Journal of Applied Biological Chemistry 61: 397-403. https://doi.org/10.3839/jabc.2018.056
  20. Park, J., H.-J. Suh and S.-H. Oh. 2022. The complete chloroplast genome of Aruncus aethusifolius (Rosaceae), a species endemic to Korea. Korean Journal of Plant Taxonomy 52: 118-122. https://doi.org/10.11110/kjpt.2022.52.2.118
  21. Park, J., H. Xi and S.-H. Oh. 2020. Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea. Korean Journal of Plant Taxonomy 50: 8-16. https://doi.org/10.11110/kjpt.2020.50.1.8
  22. Plants of the World Online. 2023. Facilitated by the Royal Botanic Gardens, Kew. Retrieved Mar. 6, 2023, available from http://www.plantsoftheworldonline.org/.
  23. Potter, D., T. Eriksson, R. C. Evans, S. Oh, J. E. E. Smedmark, D. R. Morgan, M. Kerr, K. R. Robertson, M. Arsenault, T. A. Dickinson and C. S. Campbell. 2007. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266: 5-43. https://doi.org/10.1007/s00606-007-0539-9
  24. Rodnina, M. V., M. Beringer and W. Wintermeyer. 2007. How ribosomes make peptide bonds. Trends in Biochemical Sciences 32: 20-26. https://doi.org/10.1016/j.tibs.2006.11.007
  25. Sim, M.-O., H. J. Lee, J. H. Jang, H. E. Lee, H.-K. Jung, T.-M. Kim, J. H. No, J. Jung, D. E. Jung and H.-W. Cho. 2017. Anti-inflammatory and antioxidant effects of Spiraea prunifolia Sieb. et Zucc. var. simpliciflora Nakai in RAW 264.7 cells. Korean Journal of Plant Resources 30: 335-342. https://doi.org/10.7732/KJPR.2017.30.4.335
  26. Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  27. Suh, H.-J., J. Min, J. Park and S.-H. Oh. 2021. The complete chloroplast genome of Aruncus dioicus var. kamtschaticus (Rosaceae). Mitochondrial DNA Part B Resources 6: 1256-1258. https://doi.org/10.1080/23802359.2021.1906173
  28. Tillich, M., P. Lehwark, T. Pellizzer, E. S. Ulbricht-Jones, A. Fischer, R. Bock and S. Greiner. 2017. GeSeq: Versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45: W6-W11. https://doi.org/10.1093/nar/gkx391
  29. Woo, M. H., E. H. Lee, S. O. Chung and C. W. Kim. 1996. Constituents of Spiraea prunifolia var. simpliciflora. Korean Journal of Pharmacognosy 27: 389-396.
  30. Xu, J.-H., Q. Liu, W. Hu, T. Wang, Q. Xue and J. Messing. 2015. Dynamics of chloroplast genomes in green plants. Genomics 106: 221-231. https://doi.org/10.1016/j.ygeno.2015.07.004
  31. Yoo, S.-C., S.-H. Oh and J. Park. 2021. Phylogenetic position of Daphne genkwa (Thymelaeaceae) inferred from complete chloroplast data. Korean Journal of Plant Taxonomy 51: 171-175. https://doi.org/10.11110/kjpt.2021.51.2.171
  32. Yu, S.-X., S. R. Gadagkar, D. Potter, D.-X. Xu, M. Zhang and Z.- Y. Li. 2018. Phylogeny of Spiraea (Rosaceae) based on plastid and nuclear molecular data: Implications for morphological character evolution and systematics. Perspectives in Plant Ecology, Evolution and Systematics 34: 109-119. https://doi.org/10.1016/j.ppees.2018.08.003
  33. Yu, T.T. and K.C. Kuan. 1963. Taxa Nova Rosacearum sinicarum (1). Acta Phytotaxnomica Sinica 8: 202-234.
  34. Zhang, F.-Q., Q.-B. Gao, D.-J. Zhang, Y.-Z. Duan, Y.-H. Li, P.-C. Fu, R. Xing, K. Gulzar and S.-L. Chen. 2012. Phylogeography of Spiraea alpina (Rosaceae) in the Qinghai-Tibetan Plateau inferred from chloroplast DNA sequence variations. Journal of Systematics and Evolution 50: 276-283. https://doi.org/10.1111/j.1759-6831.2012.00194.x