• Title/Summary/Keyword: novel lipase

Search Result 56, Processing Time 0.022 seconds

Study on Anti-obesity Effect of Chegameuiin-tang (체감의이인탕(體減薏苡仁湯)의 항비만 효과 연구)

  • Park, Tae-Yong;Shin, Byung-Cheul;Kong, Jae-Cheol;Song, Mi-Young;Kim, Eun-Kyung;Seo, Eun-A;Ryu, Do-Gon;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.642-648
    • /
    • 2008
  • The aim of this study is to investigate Chegameuiin-tang water extracts (CETE) have potent anti-obesity activities in a high fat diet-induced obesity mouse model. In this study, we designed three group (normal diet group, high fat diet group, high fat diet plus CETE group for 13-week oral administration). Increases in body weight and fat storage were inhibited by 13-week oral administration of CETE at a 500 mg/kg concentration in this animal model, while the amount of food intake was not affected. Results from blood lipid analysis showed that the levels of triglyceride, total cholesterol and LDL-cholesterol were significantly lowered by CETE administration, also HDL-cholesterol was increased more than high fat diet-induced obese mouse. To understand the underlying mechanism at the molecular level, the effects of CETE were examined on the expression of the genes involved in lipogenesis and lipolysis by real-time PCR. In epididymal fat of CETE-treated mice, the mRNA level of lipogenic genes such as sterol regulatory element binding protein 1 and fatty acid synthase were decreased, which was well correlated with the reduction of the epididymal fat weight. Also, CETE administration inhibited decreases of the hormone-sensitve lipase and lipoprotein lipase mRNA expressions, which are genes related with lipolysis. These results suggest that Chegameuiin-tang may have great potential as a novel anti-obesity agent.

Complete genome sequence of Paenibacillus konkukensis sp. nov. SK3146 as a potential probiotic strain

  • Jung, Hae-In;Park, Sungkwon;Niu, Kai-Min;Lee, Sang-Won;Kothari, Damini;Yi, Kwon Jung;Kim, Soo-Ki
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.666-670
    • /
    • 2021
  • Paenibacillus konkukensis sp. nov., SK3146 is a novel strain isolated from a pig feed. Here, we present complete genome sequence of SK3146. The genome consists of a single circular genome measuring 7,968,964 bp in size with an average guanine + cytosine (G+C) content of 53.4%. Genomic annotation revealed that the strain encodes 151 proteins related to hydrolases (EC3), which was higher than those in Bacillus subtilis and Escherichia coli. Diverse kinds of hydrolases including galactosidase, glucosidase, cellulase, lipase, xylanase, and protease were found in the genome of SK3146, coupled with one bacteriocin encoding gene. The complete genome sequence of P. konkukensis SK3146 indicates the immense probiotic potential of the strain with nutrient digestibility and antimicrobial activity functions.

Complete Genome Sequence of Chryseobacterium mulctrae KACC 21234T : A Potential Proteolytic and Lipolytic Bacteria Isolated from Bovine Raw Milk

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • Chryseobacterium mulctrae KACC 21234T is a novel species isolated from raw bovine milk. Psychrotrophic bacteria are considered contaminants and are hypothesized to originate from the environment. In this investigation, the C. mulctrae KACC 21234T genome was determined to be 4,868,651 bp long and assembled into four contigs with a G+C ratio of 33.8%. In silico genomic analyses revealed the presence of genes encoding proteases (endopeptidase Clp, oligopeptidase b, carboxypeptidase) and lipases (phospholipase A(2), phospholipase C, acylglycerol lipase) that can catalyze the degradation of the proteins and lipids in milk, causing its quality to deteriorate. Additionally, antimicrobial resistance and putative bacteriocin genes were detected, potentially intensifying the pathogenicity of the strain. The genomic evidence presented highlights the need for improved screening protocols to minimize the potential contamination of milk by proteolytic and lipolytic psychrotrophic bacteria.

A Novel Esterase from a Marine Metagenomic Library Exhibiting Salt Tolerance Ability

  • Fang, Zeming;Li, Jingjing;Wang, Quan;Fang, Wei;Peng, Hui;Zhang, Xuecheng;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.771-780
    • /
    • 2014
  • A putative lipolytic enzyme gene, named as est9x, was obtained from a marine microbial metagenome of the South China Sea. Sequence analysis showed that Est9X shares lower than 27% sequence identities with the characterized lipolytic enzymes, but possesses a catalytic triad highly conserved in lipolytic enzymes of the ${\alpha}/{\beta}$ hydrolase superfamily. By phylogenetic tree construction, Est9X was grouped into a new lipase/esterase family. To understand Est9X protein in depth, it was recombinantly expressed, purified, and biochemically characterized. Within potential hydrolytic activities, only lipase/esterase activity was detected for Est9X, confirming its identity as a lipolytic enzyme. When using p-nitrophenol esters with varying lengths of fatty acid as substrates, Est9X exhibited the highest activity to the C2 substrate, indicating it is an esterase. The optimal activity of Est9X occurred at a temperature of $65^{\cric}C$, and Est9X was pretty stable below the optimum temperature. Distinguished from other salt-tolerant esterases, Est9X's activity was tolerant to and even promoted by as high as 4 M NaCl. Our results imply that Est9X is a unique esterase and could be a potential candidate for industrial application under extreme conditions.

Major gene identification for LPL gene in Korean cattles (엘피엘 유전자에 대한 한우의 우수 유전자 조합 선별)

  • Jin, Mi-Hyun;Oh, Dong-Yep;Lee, Jea-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1331-1339
    • /
    • 2013
  • The lipoprotein lipase (LPL) gene can be considered a functional candidate gene that regulates fatty acid composition. Oh etc (2013) investigated the relationship between unsaturated fatty acids and five novel SNPs, and had confirmed that three polymorphic SNPs (c.322G>A, c.329A>T and c.1591G>A) were associated with fatty acid composition. We have used generalized linear model for adjusted environmental effects and multifactor dimensionality reduction (MDR) method to identify gene-gene interaction effect of statistical model in general. We applied the MDR method on the identify major interaction effects of exonic single nucleotide polymorphisms (SNPs) in the LPL gene for economic traits in Korean cattles population.

Potential Evaluation and Health Fostering Intrinsic Traits of Novel Probiotic Strain Enterococcus durans F3 Isolated from the Gut of Fresh Water Fish Catla catla

  • Alshammari, Eyad;Patel, Mitesh;Sachidanandan, Manojkumar;Kumar, Prashant;Adnan, Mohd
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.844-861
    • /
    • 2019
  • Over the last few years, marine environment was found to be a source of surplus natural products and microorganisms with new bioactive secondary metabolites of interest which can divulge nutritional and biological impact on the host. This study aims to assess the possible, inherent and functional probiotic properties of a novel probiotic strain Enterococcus durans F3 (E. durans F3) isolated from the gut of fresh water fish Catla catla. Parameters for evaluating and describing the probiotics described in FAD/WHO guidelines were followed. E. durans F3 demonstrated affirmative results including simulated bile, acid and gastric juice tolerance with exhibited significant bactericidal effect against pathogens Staphylococcus aureus, Salmonella Typhi, Escherichia coli and Pseudomonas aeruginosa. This can be due to the enterocin produced by E. durans F3 strain, which was resolute by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gel with amplification of the anticipated fragment of a structural gene; enterocin A, followed by antibiotic susceptibility assessment. Effective antioxidant potentiality against ${\alpha}$-diphenyl-${\alpha}$-picrylhydrazyl free radicals including lipase, bile salt hydrolase activity with auto-aggregation and cell surface hydrophobicity was similarly observed. Results are proving the potentiality of E. durans F3, which can also be used as probiotic starter culture in dairy industries for manufacturing new products that imparts health benefits to the host. Finding the potent and novel probiotic strains will also satisfy the current developing market demand for probiotics.

Determination and Characterization of Thermostable Esterolytic Activity from a Novel Thermophilic Bacterium Anoxybacillus gonensis A4

  • Faiz, Ozlem;Colak, Ahmet;Saglam, Nagihan;Canakci, Sabriye;Belduz, Ali Osman
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.588-594
    • /
    • 2007
  • A novel hot spring thermophile, Anoxybacillus gonensis A4 (A. gonensis A4) was investigated in terms of capability of tributyrin degradation and characterization of its thermostable esterase activity by the hydrolysis of p-nitrophenyl butyrate (PNPB). It was observed that A. gonensis A4 has an esterase with a molecular weight of 62 kDa. The extracellular crude preparation was characterized in terms of substrate specificity, pH and temperature optima and stability, kinetic parameters and inhibition/activation behaviour towards some chemicals and metal ions. Tributyrin agar assay showed that A. gonensis A4 secreted an esterase and $V_{max}$ and $K_m$ values of its activity were found to be 800 U/L and 176.5 ${\mu}M$, respectively in the presence of PNPB substrate. The optimum temperature and pH, for A. gonensis A4 esterase was $60-80^{\circ}C$ and 5.5, respectively. Although the enzyme activity was not significantly changed by incubating crude extract solution at $30-70^{\circ}C$ for 1 h, the enzyme activity was fully lost at $80^{\circ}C$ for same incubation period. The pH-stability profile showed that original crude esterase activity increased nearly 2-fold at pH 6.0. The effect of some chemicals on crude esterase activity indicated that A. gonensis A4 produce an esterase having serine residue in active site and -SH groups were essential for its activity.

Characterization of Two Metagenome-Derived Esterases That Reactivate Chloramphenicol by Counteracting Chloramphenicol Acetyltransferase

  • Tao, Weixin;Lee, Myung-Hwan;Yoon, Mi-Young;Kim, Jin-Cheol;Malhotra, Shweta;Wu, Jing;Hwang, Eul-Chul;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1203-1210
    • /
    • 2011
  • Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (${\leq}C_5$) and showed mesophilic properties. In vitro, EstDL136 catalyzed the deacetylation of 1- and 3-acetyl and 1,3-diacetyl derivates; in contrast, EstDL26 was not capable of the deacetylation at $C_1$, indicating a potential regioselectivity. EstDL26 and EstDL136 were similar to microbial hormone-sensitive lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria.

Signal crosstalk between estrogen and peroxisome proliferator-activated receptor α on adiposity

  • Kim, Bang-Hyun;Won, Young-Suk;Kim, Dae-Yong;Kim, Bora;Kim, Eun-Young;Yoon, Mi-Jung;Oh, Goo-Taeg
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.91-95
    • /
    • 2009
  • Peroxisome proliferator-activated receptor $\alpha$ and estrogen are believed to be involved in metabolic changes leading to obesity. To test this relationship, we divided female wildtype and PPAR$\alpha$-deficient mice fed on a high fat diet into the following groups: mock-operated, ovariectomized (OVX), and $E_2$-treated. The visceral white adipose tissue and plasma cholesterol levels were increased significantly in wild type OVX and decreased in the $E_2$-treated group, but interestingly not in PPAR$\alpha$-deficient mice. The mRNA levels of lipoprotein lipase in adipose tissue were also increased in only wild type OVX and decreased significantly in $E_2$-treated mice. These novel results suggest the possibility of signaling crosstalk between PPAR$\alpha$ and $E_2$, causing obesity in vivo.

Ketoprofen ethyl ester에 대해 높은 광학 선택성을 갖는 (R)- 과 (S)-stereospecfic esterase들의 클로닝과 서열분석 및 발현

  • Kim, Ji-Yeon;Choe, Gi-Seop;Kim, Geun-Jung;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.625-628
    • /
    • 2001
  • To isolate novel strains that hydrolyzed the rac-ketoprofen ethyl ester to ketoprofen in the stereospecific manner, we screened broad ecological niches and soil samples in which the activity was expected to be found. From thousands of strains, we isolated a Pseudomonas sp. S34 producing a (S)-stereospecific esterase, and a thermostable esterase with (R)-form selectivity was also 。 btained from Bacillus stearothermophilus JYl44. To further analyse the gene structure and to induce a high level expression, two genes from each strain were cloned and sequenced. BLAST search results with the esterase gene from 534 revealed that both of gene (80-84 %) and amino acid sequences (89- 95 %) were highly conserved in the related esterases from Pseudomonas strains (fluorescens and aeruginosa). The thermostable esterase from JY144, however, revealed a relative low homology (45-52 %) to other esterase and/or lipase from related strains. Obviously, a complete conversion with pure enantiomer (R - or S) were readily achieved by recombinant clones expressing either (R)- or (S)- stereospecific esterase.

  • PDF