• Title/Summary/Keyword: notch type

Search Result 191, Processing Time 0.03 seconds

A Dual Vacuum Wafer Prealigner and a Multiple Level Structure (2단 진공 웨이퍼 정렬장치 및 다층 구조 설계)

  • Kim, H.T.;Choi, M.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.14-20
    • /
    • 2011
  • This study aims at aligning multiple wafers to reduce wafer handling time in wafer processes. We designed a multilevel structure for a prealigner which can handle multiple wafer simultaneously in a system. The system consists of gripping parts, kinematic parts, vacuum chucks, pneumatic units, hall sensors and a DSP controller. Aligning procedure has two steps: mechanical gripping and notch finding. In the first step, a wafer is aligned in XY directions using 4-point mechanical contact. The rotational error can be found by detecting a signal in a notch using hall sensors. A dual prealigner was designed for 300mm wafers and constructed for a performance test. The accuracy was monitored by checking the movement of a notch in a machine vision. The result shows that the dual prealigner has enough performance as commercial products.

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

Relation between Pressure Variations and Noise in Axial Type Oil Piston Pumps

  • Kim, Jong-Ki;Kim, Hyoung-Eui;Jung, Jae-Youn;Oh, Seok-Hyung;Jung, Seok-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1019-1025
    • /
    • 2004
  • Pressure variation is one of the major sources on noise emission in the axial type oil piston pumps. Therefore, it is necessary that the pressure variation characteristics of the oil hydraulic piston pumps be clarified to reduce the pump noise. Pressure variations in a cylinder at the discharge region and the pump noise were simultaneously measured with discharge pressures and rotational speeds during the pump working. To investigate the effects of the pre-compression and the V-notch in the valve plate, we used the three types of valve plates. In this research, it is clear that the pressure variation characteristics of axial type oil piston pumps is deeply related to the pre-compression and to the V-notch design in valve plate. Therefore, we could reduce the pump noise by using the appropriate pre-compression angle and the notch design that are between the suction port and the discharge port in valve plate.

Fatigue Life Evaluation of Notched Shaft Using Local Strain Approach (국부변형률방법을 이용한 노치를 지닌 축의 피로수명평가)

  • 고승기;김영일;이학주;김완두;이상록
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.80-89
    • /
    • 1996
  • Fatigue life of a notched shaft was evaluated in order to estimate the durability and integrity of the notched shaft in design stage. Cumulative fatigue dama- ge analysis was performed using local strain approach based on the assumption that the fatigue life of a notched component is approximately same as that of a smooth specimen is subjected to the same strain at the notched component. In this paper, shafts with different notch root radius of 1, 2㎜ resulting in different values of stress concentration factors were tested under||rotating bending fatigue loading condition. Theoretical stress concentration factor for each notch type was calculated using finite element method. Fatigue life prediction program, FALIPS, written in C language was developed using the strain-life curve, and the local strain approach integrating Neuber's rule, cyclic stress-strain, and hysteresis loop equations. The fatigue life evaluated using the fatigue notch factor obtained from the experimentally determined fatigue strength showed very large scattering with nonconservatism, but the fatigue notch factors derived from the stress concentration factors and Peterson's equation reduced the considerablely accurate fatigue life evaluation within a factor of three.

  • PDF

Influence of Specimen Geometry and Notch on Hydrogen Embrittlement Resistance of SA372 Steel for Pressure Vessel (압력용기용 SA372강의 수소취성 저항성에 미치는 시편 형태의 영향)

  • Hee-Chang Shin;Sang-Gyu Kim;Jae-Yun Kim;Byoungchul Hwang
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.302-308
    • /
    • 2023
  • The influence of specimen geometry and notch on the hydrogen embrittlement of an SA372 steel for pressure vessels was investigated in this study. A slow strain-rate tensile (SSRT) test after the electrochemical hydrogen charging method was conducted on four types of tensile specimens with different directions, shapes (plate, round), and notches. The plate-type specimen showed a significant decrease in hydrogen embrittlement resistance owing to its large surface-to-volume ratio, compared to the round-type specimen. It is well established that most of the hydrogen distributes over the specimen surface when it is electrochemically charged. For the round-type specimens, the notched specimen showed increased hydrogen susceptibility compared with the unnotched one. A notch causes stress concentration and thus generates lots of dislocations in the locally deformed regions during the SSRT test. The solute hydrogen weakens the interactions between these dislocations by promoting the shielding effect of stress fields, which is called hydrogen-enhanced localized plasticity mechanisms. These results provide crucial insights into the relationship between specimen geometry and hydrogen embrittlement resistance.

Crack Growth Behavior of Tensile Overload for Small Load Amplitude (하중진폭이 작은 인장과대 하중의 균열성장 거동)

  • 유헌일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 aluminum alloy for small tensile overload under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investigated by compliance method. The applied initial stress ratios are R=-0.5 R=0.0 and R=0.25 Crack length, effective stress intensity factor range, ratio of effective stress intensity factor range and crack growth rate etc, are inspected with fracture mechanics estimate.

  • PDF

The Research of the Strain Measuement Method on the Stress Concentration Area using 3D-ESPI System (3D-ESPI System을 이용한 응력집중부의 변형률 측정기법 연구)

  • 김경수;심천식;전종욱;김덕호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.150-153
    • /
    • 2001
  • In this paper, the tensile test of three kinds of the specimens was performed. Type I specimen is without notch and type II, III specimens have a radius of semi-circular edge crack of 2.5mm, 4.0mm. The tensile load(20kN and 30kN) was applied to the specimen by Universal Testing Machine. 3D-ESPI system and strain gauge measured simultaneously the strain in the center of the specimen and near the edge crack. The test results were compared with each other. Moreover, the stress concentration factor based on geometric information was calculated to confirm the accuracy of the strain measured by 3D-ESPI system. The calculated strain was compared with the measured one by 3D-ESPI system. As a result, it was confirmed that 3D-ESPI system measured the right strain near the semi-circular edge crack of the specimens.

  • PDF

The barrier shape design for reduction of cogging torque in IPM type motor (IPM 전동기의 코깅토크 저감을 위한 회전자 형상설계)

  • Kim, Hyung-Gyu;Kang, Gyu-Hong;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.891_892
    • /
    • 2009
  • This paper presents the rotor study on the deal with the shape design with a flux barrier to minimize the cogging torque of Interior Permanent Magnet Synchronous Motor(IPMSM). In order to consider the notch effect, the torque characteristics according to the shape of notch is performed and analyzed. From the this results, we found that an optimal location and radius of the notch effectively suppresses the torque pulsation of the IPM drive. The rotor shape design also shows improvement in the average torque

  • PDF

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.