This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.
Journal of the Korean Data and Information Science Society
/
제26권2호
/
pp.487-493
/
2015
Time series data sometimes show violation of normal assumptions. For cases where the assumption of normality is untenable, more exible models can be adopted to accommodate heavy tails. The exponential power distribution (EPD) is considered as possible candidate for errors of time series model that may show violation of normal assumption. Besides, the use of exible models for errors like EPD might be able to conduct the robust analysis. In this paper, we especially consider EPD as the exible distribution for errors of autoregressive models. Also, we represent this distribution as scale mixture of uniform and this form enables efficient Bayesian estimation via Markov chain Monte Carlo (MCMC) methods.
It is expected that particle size distribution of any portion obtained through screening, is of more uniform than that of the original mixture, typically following such as log-normal, Rosin-Rammler distributions and so on. In this study, therefore, a new relation between parameters of the uniform distribution and flow characteristics of the coarse particle suspensions is derived based on the continuous polydisperse model (Ookawara and Ogawa, 2002b), which is derived from the discrete polydisperse model (Ookawara and Ogawa,2002a). The derived model equation predicts a linear increase of viscosity with shear rate, viz., dilutant flow characteristics. Further, the increase of viscosity is expected to be proportional to the square of volume fraction of particles, and to show the linear dependency on density and average diameter of particles. It is also shown that the uniform distribution model includes additional term that expresses the effect of distribution width. For verification of the model, the experimental results of Clarke (1967) are cited as well as in our previous work for the monodisperse model (Ookawara and Ogawa,2000) since most parameters were varied independently in his work. It is suggested that the newly introduced term expands the applicable range compared with the monodisperse model.
Journal of the Korean Data and Information Science Society
/
제28권2호
/
pp.251-260
/
2017
Black와 Scholes (1973)와 Merton (1973)의 옵션 가격결정이론에 대한 논문이 발표 된 이후 다양한 실증 분석 결과에 의하여 시간의 흐름에 따라 변동성이 불변한다고 가정하는 Black-Scholes 모형이 시장의 옵션 가격을 적절히 설명하지 못하고 있다는 것이 밝혀지면서 많은 대안적인 연구들이 진행되어 왔다. 예를 들어, Duan (1995)은 위험중립측도 하에서의 몬테카를로 시뮬레이션을 통해 GARCH 모형을 따르는 기초 자산의 옵션가격을 도출하는 방법을 제시하였다. 그러나 실제 주식이나 환율 등의 금융자료에 수익률분포는 정규분포에 비해 꼬리가 두껍고, 급첨의 형태를 보이는 데 Duan (1995)의 옵션가격 결정 방법은 이를 적절히 반영하지 못하고 있다. 이를 해결하기 위해 본 논문에서는 정규혼합모형의 오차를 갖는 GARCH 모형을 이용한 옵션가격 결정 방법을 제안하고자 한다. KOSPI200 옵션가격 자료를 이용하여 본 논문에서 제시된 옵션가격과 정규분포를 가정한 GARCH 모형에 의해 결정된 옵션가격과 비교한 결과, 금융 자료의 급첨의 성질이 뚜렷한 불안정한 시기인 경우에 오차가 정규혼합모형이라고 가정한 GARCH 모형에 의한 옵션가격 결정의 성과가 월등히 좋아지는 것을 확인할 수 있었다.
교통하중은 포장 설계 및 해석에서 가장 중요한 입력 변수로서 포장 파손의 주요 원인이 된다. 따라서 정확한 포장 설계 및 해석을 위해서는 적절한 교통하중 정량화가 선행되어야 한다. 전통적으로 교통하중은 혼합된 교통흐름을 설계목적의 하나의 값으로 변환시켜주는 ESALs 관점에서 추정되어왔으나 이는 AASHO 도로 테스트를 통해 도출된 지극히 경험적인 값으로 전 노선망에 대해 평균적인 계수로 적용하기에는 한계가 있다. 이러한 등가단축하중계수의 문제점을 해결하기 위해 선진국에서는 역학적 개념을 도입한 많은 연구를 진행한 결과 역학적-경험적 설계법(Mechanistic-Empirical Design)에 적용할 수 있는 축하중 분포(Axle Load Spectra)를 이용한 교통하중 정량화 방안을 수립하였다. 본 논문에서는 일반국도에 설치 운영되고 있는 WIM 시스템을 통해 수집된 화물차 하중 데이터를 이용하여 축하중 분포 특성(Axle Load Spectra)을 이해하고 혼합정규분포함수에 기초한 축 형태별 하중 분포 모형식을 제시하였으며, 이를 기존 하중 분포 모형과 비교 평가하였다. 본 논문에서 제시한 화물차 축하중 분포 특성 및 축하중 분포 모형식은 향후 일반국도 및 고속도로의 포장 설계법 개발을 위한 교통하중 정량화 방안 수립 시, 과적 차량 단속 정책 수립 시, 도로 유지관리를 위한 계획 수립 시 기초자료로써 활용가능하다.
This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.
영상처리 분야의 중요한 주제인 영상의 잡음 제거 과정은 원래의 순수한 영상이 다양한 원인으로 발생한 잡음에 의해 오염되었을때 이 잡음을 제거하거나 줄이는 것을 의미한다. 잡음 제거 과정에서는 영상에 추가된 잡음과 원 영상이 가진 고유한 특징들을 구별해내는 것이 중요하며 이에 대한 많은 연구가 진행되고 있다. 적응적 필터와 시그마 필터는 잡음 제거를 위하여 사용하는 대표적인 잡음 제거 필터이며 이 필터들의 효용성은 정확한 잡음 추정에 영향을 받는다. 따라서 본 연구에서는 디리클레 정규 혼합모형을 토대로 영상을 오염시키고 있는 잡음의 분포를 생성하고 이를 토대로 영상의 특징과 잡음을 구별하기 위한 베이지안 방법을 제시한다. 특히 잡음의 분포와 특징의 분포를 구별하기 위해 베이지안 추론을 전개하고 영상에 포함된 잡음을 제거하는 알고리즘을 제시하고자 한다.
Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.
RHEEM, SUNGSUE;SEJONG OH;KYOUNG SIK HAN;JEE YOUNG IMM;SAEHUN KIM
Journal of Microbiology and Biotechnology
/
제12권3호
/
pp.449-456
/
2002
The objective of this study was to optimize medium composition of initial pH, tryptone, glucose, yeast extract, and mineral mixture for production of bacteriocin by Lactobacillus acidophilus ATCC 4356, using response surface methodology. A response surface approach including new statistical and plotting methods was employed for design and analysis of the experiment. An interiorly augmented central composite design was used as an experimental design. A normal-distribution log-link generalized linear model based on a subset fourth-order polynomial ($R^2$=0.94, Mean Error Deviance=0.0065) was used as an analysis model. This model was statistically superior to the full second-order polynomial-based generalized linear model ($R^2$=0.80, Mean Error Deviance=0.0140). Nonlinear programming determined the optimum composition of the medium as initial pH 6.35, typtone $1.21\%$, glucose $0.9\%$, yeast extract $0.65\%$, and mineral mixture $1.17\%$. A validation experiment confirmed that the optimized medium was comparable to the MRS medium in bacteriocin production, having the advantage of economy and practicality.
대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.