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Abstract

Time series data sometimes show violation of normal assumptions. For cases where
the assumption of normality is untenable, more flexible models can be adopted to
accommodate heavy tails. The exponential power distribution (EPD) is considered as
possible candidate for errors of time series model that may show violation of normal
assumption. Besides, the use of flexible models for errors like EPD might be able to
conduct the robust analysis. In this paper, we especially consider EPD as the flexible
distribution for errors of autoregressive models. Also, we represent this distribution as
scale mixture of uniform and this form enables efficient Bayesian estimation via Markov
chain Monte Carlo (MCMC) methods.

Keywords: Autoregressive model, exponential power distribution, Gibbs sampler, ro-
bustness.

1. Introduction

Real data often show violation of normal assumptions. Heavy-tailed distributions are fre-
quently encountered in empirical studies. For cases where the assumption of normality is
untenable, more flexible models can be adopted to accommodate heavy tails. The exponen-
tial power distribution (EPD) is considered as possible candidate for errors of time series
model that may show violation of normal assumption. Besides, the use of flexible models
for errors like EPD might be able to conduct the robust analysis. An exponential power
distribution had been studied by Box and Tiao (1992) in the context of robustness studies.
The exponential power density is given by (1.1)
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where µ ∈ R, σ > 0, p ≥ 1. The EPD has three parameters: µ is a location pa-
rameter, σ is a scale parameter and p determines the kurtosis, which is given by κ =
Γ(1/p)Γ(5/p)/(Γ(3/p))2. If parameter p is fixed, the distribution is a location-scale family
of distributions. Hence the parameter p is related to the thickness of the tails. Specifically,
the EPD is heavy-tailed distributions, if 1 < p < 2 and light-tailed distributions, if p > 2.
Also, the special cases of the EPD are the double exponential distribution (p = 1), the
normal distribution (p = 2) and the uniform distribution (p→∞) as seen in Figure 1.1.

1 Ph.D student, Department of Statistics, Kyungpook National University, Daegu 702-701, Korea.
2 Corresponding author: Professor, Department of Statistics, Kyungpook National University, Daegu

702-701, Korea. E-mail: dalkim@knu.ac.kr



488 Hyunnam Ryu · Dal Ho Kim

Figure 1.1 Various cases of the EPD

Recently, many studies that consider the skewness as well as the kurtosis in view of
robustness have been actively discussed (Zhu and Zinde-Walsh, 2009; DiCiccio and Monti,
2004; Salazar et al., 2012).

Generally, most of distributions can be expressed by the scale mixtures. Also, we can repre-
sent EPD as the scale mixture of uniform distributions (Walker and Gutiérrez-Peña, 1999).
This form enables efficient Bayesian estimation via Markov chain Monte Carlo (MCMC)
methods (Fernandez and Steel, 1998).
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where Gamma(α, β) denotes a gamma distribution with parameters α and β.
In this paper, we especially consider EPD as the flexible distribution for errors of au-

toregressive (AR) models. Also, we compare the exponential power errors with Student’s t
errors, that is one of well-known heavy-tailed distributions, for the autoregressive models.

2. Bayesian analysis for autoregressive model

2.1. Autoregressive model with exponential power errors

Consider the autoregressive model with order 1 in which the t th observation yt satisfies

yt = α+ ρyt−1 + et, t = 1, ..., n, (2.1)

where et is the error such that e1, ..., en are independent and identically distributed according
to the EPD with location parameter zero, scale parameter σ and shape parameter p. Also
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α is an intercept coefficient and ρ is an autoregressive coefficient. Equivalently, this model
can be expressed by the scale mixture of uniform distributions as (2.2).

yt|ut ∼ Uniform

(
α+ ρyt−1 − 2−

1
2 p

1
pσu

1
p

t , α+ ρyt−1 + 2−
1
2 p

1
pσu

1
p

t

)
ut ∼ Gamma

(
1 +

1

p
, 2−

p
2

)
, t = 1, . . . , n. (2.2)

Let y = (y1, . . . , yn)′ be n observations and u = (u1, . . . , un)′ be the mixing parameters.
Thus the likelihood function is given by

L(α, ρ, σ|u,y) ∝ σ−nexp
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p
2
1
p
|yt−α−ρyt−1|p

σp .
Since there is no sufficient prior information, we assign diffused uniform priors for the inter-

cept coefficient and the autoregressive coefficient, and a diffused gamma prior on the inverse
of the variance components. And we consider the uniform prior for autoregressive coefficient
from -1 to 1, to acquire the stationarity. Prior distributions are assumed to be mutually in-
dependent. We have the following priors : α ∼ Uniform(−100, 100), ρ ∼ Uniform(−1, 1) and
(σ2)−1 ∼ Gamma(a, b). Here X ∼ Gamma(a, b) denotes a gamma distribution with shape
parameter a and rate parameter b having the expression f(x) ∝ xa−1exp(−bx), x ≥ 0. The
full posterior of the parameters given the data is as follows :
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Thus, the conditional density of α, ρ, σ, u are given by
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where IG(α, β) denotes a inverse gamma distribution with parameters α and β and Exponen-
tial(λ) denotes a exponential distribution with parameter λ.

Each conditional density has standard distribution. So we can infer the parameters using
Gibbs sampler to sample from the full conditional relevant parameters.
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2.2. Autoregressive model with Student’s t errors

We also think about the autoregressive models with Student’s t errors that is one of the
heavy-tailed models to compare to results of EPD. Similarly, consider the autoregressive
model with order 1 in which t th observation yt satisfies

yt = α+ ρyt−1 + et, t = 1, ..., n, (2.9)

where et is the error such that e1, ..., en are independent and identically distributed according
to the Student’s t distribution with location parameter zero and scale parameter σ. And α
is intercept coefficient and ρ is autoregressive coefficient. As we know, this model can be
expressed by the scale mixture of normals. So, we can express this model as follows.
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Let y = (y1, . . . , yn)′ be n observations and u = (u1, . . . , un)′ be the mixing parameters.
Thus the likelihood function is given by
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Since there is no sufficient prior information, we assign diffused uniform priors for the
intercept coefficient and the autoregressive coefficient, and a diffused gamma prior on the
inverse of the variance components on the same priors as the EPD case. And we consider
the uniform prior for autoregressive coefficient from -1 to 1, to acquire the stationarity.
The prior distributions are assumed to be mutually independent. We have the following
priors : α ∼ uniform(−100, 100), ρ ∼ uniform(−1, 1) and (σ2)−1 ∼ Gamma(a, b). Here
X ∼ Gamma(a, b) denotes a gamma distribution with shape parameter a and rate parameter
b having the expression f(x) ∝ xa−1exp(−bx), x ≥ 0. The full posterior of α, ρ, σ given the
data π(α, ρ, σ|u,y) is as follows.
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Then, the conditional density of α, ρ, σ, u are given by
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Thus each conditional densities has standard distribution. So we can infer the parameters
using Gibbs sampler to sample from the full conditional relevant parameters and compare
to result of the exponential power case.

3. Numerical studies

Consider the AR(1) model

yt = α+ ρyt−1 + et, (3.1)

where innovations are independent and identically distributed, each with a contaminated
normal density 0.9×N(0, 1) + 0.1×N(δ, 1). The properties of the estimator of ρ when the
EPD is used to approximate the distribution of et’s was studied by simulation in two cases:
a mild contamination having δ = 1 and a more serious contamination having δ = 8. The
simulation study was performed with series of length n = 300, α = 0 and ρ = 0.7 (Figure
3.1).

We would like to compare Bayes estimates of the AR(1) model with different distributions
of errors such as the exponential power errors having different parameter p = (1.0, 1.5, 2.0)
and the Student’s t errors, as we already mentioned in the previous section. So, we iterated
2,000 times (thin=60) for the each models and discarded 1,000 burn-in samples.

Figure 3.1 Density of the simulated data
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In this example, the interest is focused on knowing if the parameter values are recovered,
i.e., if the posterior estimations are close to the original parameters. The posterior means,
standard deviations and the 95% highest posterior density (HPD) intervals are reported in
Table 3.1-3.2. The posterior mean of the AR(1) with exponential power errors (p = 1.0)
is 0.6596 which is the closest to the true value among the four models in the mild case.
And we can also check that the AR(1) with exponential power errors (p = 1.0) has the
shortest HPD interval (0.5780, 0.7449), and this interval contain the true value ρ = 0.7 as
well. In the serious case (i.e., heavier case than the mild), the posterior mean of the AR(1)
with exponential power errors (p = 1.0) is 0.6974, which is not only more accurate than
the mild case but also the most similar value to the true value. And 95% HPD intervals of
the serious case also have the shortest interval (0.6504, 0.7450) when the exponential power
errors have the shape parameter p is 1.0. In addition, we detect that when AR(1) models
have the exponential power errors, the shape parameter p is smaller (i.e., tails are heavier),
they have more accurate result from heavy-tailed case.

Table 3.1 Bayesian estimates and HPD credible intervals under AR(1): δ = 1

α ρ σ

Mean SD 95% HPD Mean SD 95% HPD Mean SD 95% HPD

p = 1.0 0.0188 0.0660 -0.1153 0.1483 0.6596 0.0417 0.5780 0.7449 0.8778 0.0550 0.7724 0.9880

EP p = 1.5 0.0329 0.0628 -0.0901 0.1574 0.6519 0.0425 0.5686 0.7362 0.9973 0.0467 0.9070 1.0920

p = 2.0 0.0415 0.0632 -0.0866 0.1651 0.6517 0.0440 0.5652 0.7395 1.1090 0.0449 1.0221 1.1958

Student t 0.0413 0.0643 -0.0874 0.1671 0.6501 0.0447 0.5606 0.7371 1.1016 0.0444 1.0148 1.1915

Table 3.2 Bayesian estimates and HPD credible intervals under AR(1): δ = 8

α ρ σ

Mean SD 95% HPD Mean SD 95% HPD Mean SD 95% HPD

p = 1.0 0.1074 0.0927 -0.0736 0.2944 0.6974 0.0248 0.6504 0.7450 1.4393 0.0851 1.2737 1.6092

EP p = 1.5 0.3253 0.1330 0.0659 0.5901 0.6955 0.0315 0.6322 0.7561 1.9543 0.0930 1.7748 2.1398

p = 2.0 0.7265 0.1719 0.3853 1.0723 0.6924 0.0423 0.6069 0.7758 2.4702 0.1014 2.2785 2.6756

Student t 0.7065 0.1715 0.3723 1.0486 0.6916 0.0411 0.6088 0.7716 2.4450 0.1034 2.2399 2.6481

4. Concluding remarks

In this paper, the EPD has been analyzed from a Bayesian viewpoint. The exponential
power family includes the double exponential distribution and the normal distribution as
particular cases and provides distributions with either lighter or heavier tails compared to
the normal one. Using such a EPD for the error terms in a autoregressive model, we detect
that the EPD is able to capture the kurtosis features better than other competing models by
adjusting the parameter p when some observational data have heavy-tailed distributions. So,
in these situation, the exponential power case can release the normal assumptions. Besides,
using the proposed scale mixture representations of distributions, Bayesian inference is pro-
vided via an ′easy to implement′ Gibbs sampler. And this involves constructing a Markov
chain which has as its stationary distribution the relevant posterior distribution of interest.
Thus, this scale mixture have the advantage of simplifying the full conditional distributions
and making Bayesian computations more efficient.
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