• 제목/요약/키워드: nonparametric function estimation

검색결과 86건 처리시간 0.031초

Data-Driven Smooth Goodness of Fit Test by Nonparametric Function Estimation

  • Kim, Jongtae
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.811-816
    • /
    • 2000
  • The purpose of this paper is to study of data-driven smoothing goodness of it test, when the hypothesis is complete. The smoothing goodness of fit test statistic by nonparametric function estimation techniques is proposed in this paper. The results of simulation studies for he powers of show that the proposed test statistic compared well to other.

  • PDF

NONPARAMETRIC ESTIMATION OF THE VARIANCE FUNCTION WITH A CHANGE POINT

  • Kang Kee-Hoon;Huh Jib
    • Journal of the Korean Statistical Society
    • /
    • 제35권1호
    • /
    • pp.1-23
    • /
    • 2006
  • In this paper we consider an estimation of the discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of the change point in the variance function and then construct an estimator of the entire variance function. We examine the rates of convergence of these estimators and give results for their asymptotics. Numerical work reveals that using the proposed change point analysis in the variance function estimation is quite effective.

Nonparametric Estimation of Discontinuous Variance Function in Regression Model

  • 강기훈;허집
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 2002
  • We consider an estimation of discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of a change point and jump size in variance function and then construct an estimator of entire variance function. We examine the rates of convergence of these estimators and give results on their asymptotics. Numerical work reveals that the effectiveness of change point analysis in variance function estimation is quite significant.

  • PDF

Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data

  • Kim, Hee-Jeong;Kim, Yong-Dai;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.111-119
    • /
    • 2007
  • In this paper, we develop a nonparametric Bayesian methodology of estimating an unknown distribution function F at the given survival time with current status data under the assumption of Dirichlet process prior on F. We compare our algorithm with the nonparametric maximum likelihood estimator through application to simulated data and real data.

On Nonparametric Estimation of Data Edges

  • Park, Byeong U.
    • Journal of the Korean Statistical Society
    • /
    • 제30권2호
    • /
    • pp.265-280
    • /
    • 2001
  • Estimation of the edge of a distribution has many important applications. It is related to classification, cluster analysis, neural network, and statistical image recovering. The problem also arises in measuring production efficiency in economic systems. Three most promising nonparametric estimators in the existing literature are introduced. Their statistical properties are provided, some of which are new. Themes of future study are also discussed.

  • PDF

Estimation of Jump Points in Nonparametric Regression

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.899-908
    • /
    • 2008
  • If the regression function has jump points, nonparametric estimation method based on local smoothing is not statistically consistent. Therefore, when we estimate regression function, it is quite important to know whether it is reasonable to assume that regression function is continuous. If the regression function appears to have jump points, then we should estimate first the location of jump points. In this paper, we propose a procedure which can do both the testing hypothesis of discontinuity of regression function and the estimation of the number and the location of jump points simultaneously. The performance of the proposed method is evaluated through a simulation study. We also apply the procedure to real data sets as examples.

A General Semiparametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.421-429
    • /
    • 2008
  • We consider a general semiparametric additive risk model that consists of three components. They are parametric, purely and smoothly nonparametric components. In parametric component, time dependent term is known up to proportional constant. In purely nonparametric component, time dependent term is an unknown function, and time dependent term in smoothly nonparametric component is an unknown but smoothly function. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

Nonparametric Estimation of Univariate Binary Regression Function

  • Jung, Shin Ae;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.236-241
    • /
    • 2022
  • We consider methods of estimating a binary regression function using a nonparametric kernel estimation when there is only one covariate. For this, the Nadaraya-Watson estimation method using single and double bandwidths are used. For choosing a proper smoothing amount, the cross-validation and plug-in methods are compared. In the real data analysis for case study, German credit data and heart disease data are used. We examine whether the nonparametric estimation for binary regression function is successful with the smoothing parameter using the above two approaches, and the performance is compared.

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.