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Abstract 

We consider methods of estimating a binary regression function using a nonparametric kernel estimation 

when there is only one covariate. For this, the Nadaraya-Watson estimation method using single and double 

bandwidths are used. For choosing a proper smoothing amount, the cross-validation and plug-in methods are 

compared. In the real data analysis for case study, German credit data and heart disease data are used. We 

examine whether the nonparametric estimation for binary regression function is successful with the smoothing 

parameter using the above two approaches, and the performance is compared. 
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1. INTRODUCTION 

Let {(𝑋𝑖 , 𝑌 𝑖) | 𝑌𝑖 = 0, 1, 𝑖 = 1, ⋯ , 𝑛} denote the observed values of the covariate and the binomial 

response variable for binomial regression, and let 𝑓(𝑥) and 𝑔(𝑥)  be the density function of the covariates 

𝑋𝑖 when 𝑌 = 1 and 𝑌 = 0, respectively. The goal of this paper is to predict the 𝑌𝑖 value given the covariate 

𝑋𝑖. That is, estimating the univariate binomial regression function is the same as the estimation problem of the 

binomial classification function. As an estimation method, a nonparametric Nadaraya-Watson estimator is used 

with an appropriate single or double smoothing amount.  

A smoothing amount should be selected for nonparametric estimation. Two approaches, plug-in and cross-

validation are introduced and their effects are examined. As mentioned in [1], the basic idea for estimating a 

binomial regression function is as follows. The binomial regression function formula is expressed as 𝜆(𝑥) =

Pr(𝑌 = 1|𝑋 = 𝑥), where 𝑌 is the binary response variable, 𝑌 = 1 is “success”, 𝑌 = 0 is “failure”, and 𝑋 

is a continuous covariate. Let ℎ(𝑥) denote the density function for all covariates, regardless of success or 

failure, which is defined by ℎ(𝑥) = 𝜋1𝑓(𝑥) + 𝜋2𝑔(𝑥), 𝜋2 = 1 − 𝜋1. Then, the binomial regression function 

can be expressed as the following Equation (1). 

 

𝜆(𝑥) = 𝑃𝑟(𝑌 = 1|𝑋 = 𝑥) =  
𝜋1𝑓(𝑥)

𝜋1𝑓(𝑥) + (1 − 𝜋1)𝑔(𝑥)
=

𝜋1𝑓(𝑥)

ℎ(𝑥)
                                 (1) 
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If 𝑠 out of sample size 𝑛 is success and 𝑚 = 𝑛 − 𝑠 is failure, then the kernel density function estimators 

of 𝑓 and 𝑔 can be expressed as Equation (2), respectively. 

 

𝑓(𝑥) = 𝑠−1 ∑ 𝑌𝑖 𝐾𝑎(𝑥 − 𝑋𝑖)𝑛
𝑖=1 , 𝑔̂(𝑥) = 𝑚−1 ∑ (1 − 𝑌𝑖 ) 𝐾𝑏(𝑥 − 𝑋𝑖)𝑛

𝑖=1            (2) 

 

Here, 𝑎 and 𝑏 are the bandwidths that control the smoothness of the density function estimated based on 

success and failure data, respectively, and the kernel function 𝐾 is a symmetric probability density function, 

meaning 𝐾𝑐(𝑢) = 𝑐−1𝐾( 𝑢 𝑐⁄ ). In this study, we examine the selection criteria for smoothing parameters 𝑎 

and 𝑏, and check whether there is a difference in the performance of binary regression function according to 

them. 

 

2. NONPARAMETRIC FUNCTION ESTIMATION 

2.1  Kernel Density Estimation 

 

Estimation method of the probability density function can be divided into a parametric and nonparametric 

one depending on whether the target density function is formalized by a parameter or not. The most basic 

nonparametric estimation method is a histogram. In the case of continuous data, histogram divides the entire 

given data into several classes and expresses the relative frequency belonging to each class as a bar. However, 

histogram cannot find the derivative of the estimator, and the shape of the estimated distribution varies a lot 

depending on how the class size is determined. Kernel density estimation is a method that compensates for 

these shortcomings and has good statistical properties. When a random sample obtained from a continuous 

probability density function 𝑓 is {𝑋1, 𝑋2, ⋯ , 𝑋𝑛}, the kernel density estimator is defined as follows. 

 

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝐾(

𝑛

𝑖=1

𝑥 − 𝑋𝑖

ℎ
) 

 

Here, for the kernel function 𝐾 we normally use a symmetric probability density function, and ℎ is the 

smoothing parameter (bandwidth), which determines the smoothness of the estimates. Histogram has the same 

weight regardless of the distance between the data 𝑋𝑖 and 𝑥 within a certain interval, but in the case of the 

kernel estimation method, the closer the distance between the data 𝑋𝑖 and 𝑥, the more weight is given. Kernel 

functions include Uniform, Triangle, Epanechnikov, Biweight, Tricube, Triweight, and Gaussian. For a 

detailed description of the kernel function, refer to [2]. Parametric and nonparametric estimation of probability 

density functions has also been discussed in [3]. In this paper, the biweight kernel function defined as follows 

is used.  

 

𝐾(𝑢) = {
15

16
(1 − 𝑢2)2,       𝑖𝑓  |𝑢| ≤ 1

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

2.2  Binary Regression Function Estimation 

 

In order to nonparametrically estimate the binomial regression function 𝜆(𝑥), the unknown 𝑓 and 𝑔 in 

(1) are estimated and substituted into the kernel probability density function of (2). Since 𝜋1  and 𝜋2 

correspond to prior probabilities from each group, if the sample size is reflected and replaced with 𝑠/𝑛 and 
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𝑚/𝑛, the result is as shown in (3).  

 

𝜆̂𝑎,𝑏,𝑐(𝑥) =  
𝑠𝑓𝑎(𝑥)

𝑠𝑓𝑏(𝑥) + 𝑚𝑔̂𝑐(𝑥)
                                                        (3) 

 

Here, 𝑎, 𝑏 and 𝑐 are the smoothing parameter required when estimating each probability density function 

using the kernel. Since 𝑎 and 𝑏 are smoothing amounts for estimating the same distribution, there is no need 

to set them differently, so 𝑎 = 𝑏 was set in all cases. Therefore, 𝜆̂𝑎, a case in which the same smoothing 

amount is estimated for 𝑓 and 𝑔, and 𝜆̂𝑎,𝑐, a case in which different smoothing amounts are used for 𝑓 and 

𝑔, are compared. Specifically, 𝜆̂𝑎 and 𝜆̂𝑎,𝑐 are expressed as (4) and (5), and it can be seen that they are in 

the form of Nadaraya-Watson estimators.  

 

𝜆̂𝑎 =
𝜋̂1𝑓𝑎(𝑥)

𝜋̂1𝑓𝑎(𝑥) + 𝜋̂2𝑔̂𝑎(𝑥)
=

∑ 𝑌𝑖 𝐾𝑎(𝑥 − 𝑋𝑖)𝑛
𝑖=1

∑ 𝐾𝑎(𝑥 − 𝑋𝑖)𝑛
𝑖=1

                                          (4) 

𝜆̂𝑎,𝑐 =
𝜋̂1𝑓𝑎(𝑥)

𝜋̂1𝑓𝑎(𝑥) + 𝜋̂2𝑔̂𝑐(𝑥)
=

∑ 𝑌𝑖 𝐾𝑎(𝑥 − 𝑋𝑖)𝑛
𝑖=1

∑ 𝑌𝑖𝐾𝑎(𝑥 − 𝑋𝑖)𝑛
𝑖=1 + ∑ (1 − 𝑌𝑖)𝐾𝑐(𝑥 − 𝑋𝑖)𝑛

𝑖=1

                  (5) 

 

2.3  Bandwidth Selection Method 

 

1) Plug-in Method 

To select the smoothing amount for nonparametric estimation of the binomial regression function, divide by 

grid points in the appropriate range of each smoothing amount, and obtain 𝑓 and 𝑔̂, finally estimate 𝜆. Then, 

compare the weighted integrated squared error for each smoothing parameter to select the best one. This is 

called the optimal grid search method. This is a good method based on the optimal weighted integrated squared 

error, but another method should be tried because it is difficult to implement in practice. A plug-in method is 

one of the methods that can automatically select a smoothing quantity that fits the data well in the binomial 

regression function. This method used to determine the smoothing amount in kernel density function estimation 

has been discussed in detail in [4] and [5]. 

A plug-in method is used to select the smoothing amount for estimating each kernel density function in 

X|𝑌 = 1 ~ 𝑓(𝑥) and X|𝑌 = 0 ~ 𝑔(𝑥). This is to replace an unknown function value and a related value with 

an estimator in the formula for asymptotically obtaining the optimal smoothing amount, and the first step uses 

a value calculated from the normal distribution. 

 

2) Cross-validation Method 

One of the methods for selecting a bandwidth is cross-validation, which includes least squares cross-

validation, maximum likelihood cross-validation, and biased cross-validation, etc. In this paper, the maximum 

likelihood cross-validation criterion was used, and [6] presented a method for selecting a smoothing quantity 

using the concept of the likelihood function. The proposed method is to select the smoothing amount h which 

maximize the likelihood function presented in (6). 
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𝑀𝐿𝐶𝑉(ℎ) =    
1

𝑛
 ∑ 𝑙𝑜𝑔𝑓−𝑖(𝑋𝑖

𝑛

𝑖=1

)                                                                  (6) 

 

Here, 𝑓−𝑖(𝑋𝑖) is the estimated value of the probability density function from the remaining observation data 

except for the value 𝑋𝑖, as in Equation (7). 

 

𝑓−𝑖(𝑋𝑖) =  
1

(𝑛 − 1)ℎ
 ∑ 𝐾 (

𝑥 − 𝑋𝑗

ℎ
)                                                             (7)

𝑗≠𝑖

 

 

3. DATA ANALYSIS 

In this section, we will compare the results of estimating the binomial regression function through the case 

of two real data whose population distribution is unknown. The first case is German credit data according to 

several independent variables, and the second case is data on the presence or absence of heart disease according 

to causes. Both data were obtained from the University of California (UCI) repository and there are no missing 

values. 

 

3.1  German Credit Data 

 

This is a data set on the credit evaluation of 1000 Germans, and consists of 7 continuous variables such as 

loan amount, account balance, delinquency period, past credit history, income, and current employment status, 

and 13 categorical variables, a total of 20 independent variables. The dependent variable is a binary variable 

consisting of an individual's creditworthiness, that is, "Good" or "Bad". In accordance with the above-

mentioned binomial regression analysis, one continuous variable was selected out of a total of 20 independent 

variables, and the credit was estimated accordingly. Duration in month was selected as a continuous 

independent variable that affects credit rating, which is a dependent variable. Therefore, the independent 

variable is the overdue period, and the dependent variable is a binary variable with a value of 0 or 1 in terms 

of creditworthiness. 

Among the given 1000 data, 600 samples selected by sampling without replacement were divided into the 

training set, and the remaining 400 samples were divided into the test set. After selecting a bandwidth estimate 

from the training set, the credit is estimated by applying this to the 400 test samples. The performance of 

estimation is measured by comparing it with the actual value. That is, the smoothing parameter is estimated 

using the cross-validation method and the plug-in method, and 𝑓 and 𝑔 are estimated. If 𝑓(𝑥) > 𝑔̂(𝑥), the 

credit rating is good, that is, 𝜆̂(𝑥) = 1, and in the opposite case, the credit rating is bad, that is, classified as 

𝜆̂(𝑥) = 0. By comparing the credit rating 𝜆̂ (𝑥) classified through estimation and the actual value 𝜆(𝑥), the 

rate of the correctly classified cases was obtained. As a result of the analysis, the correct classification rate was 

about 65%, and the cross-validation gave better performance than the plug-in approach. However, considering 

that only one variable was selected out of a total of 20 independent variables and the relationship with the 

dependent variable was estimated using the binomial regression equation, both methods can be considered as 

not bad classification results. 
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      (a)                                             (b) 

Figure 1. Data plot and density function estimates of credit rating  

according to the duration in month 

The Figure 1(a) shows the data distribution of credit rating according to the overdue period in the given 

data. Since the independent variable is the number of months overdue, the values often overlap, so the plots 

are displayed as overlapping. When the value of the credit rating is 1, it is good and the density function of the 

independent variable is 𝑓(𝑥), and when it is 0, which is bad, and the density function is 𝑔(𝑥). The Figure 

1(b) shows estimated 𝑓(𝑥) and 𝑔̂(𝑥) by using the cross-validation bandwidth. 

 

3.2  Heart Disease Data 

 

This data set is about whether a total of 1341 people were diagnosed with heart disease and various factors 

related to it. There are a total of 76 independent variables, including age, sex, cholesterol level, blood pressure, 

and categorical variables, such as smoking or not, and the dependent variable is the diagnosis of heart disease. 

Among the 76 independent variables, 'cholesterol level (serum cholestoralin mg/dl)', which is continuous and 

thought to be highly related to the presence or absence of heart disease, was selected as the independent 

variable.  

The distribution of the independent variable in the presence of heart disease is 𝑓(𝑥), and the distribution of 

the independent variable in the absence of heart disease is 𝑔(𝑥). As in the case of the previous credit data, 

among the total 1341 data, 800 observations are taken and into the training set and the remaining 541 

observations are classified into the test set. With the estimate of the smoothing amount obtained from the 

training set, it is applied to the test set to estimate the presence or absence of heart disease, and the accuracy 

of the estimation is checked by comparing it with the actual value. The estimation results were similar to the 

previous data, and the accuracy was about 61-64%. The cross-validation method showed slightly better results 

than the plug-in method, too. Plots of data and estimates are omitted to save space. 

 

4. CONCLUDING REMARKS 

In this paper, the kernel estimation method is used to estimate the binomial regression function in the case 

of single covariate. To analyze the effect, two smoothing parameter selection methods were used and the 

performance was compared with the weighted integrated squared error. We evaluated the performance of the 
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estimation method using actual data. The two available data relate to German credit data and heart disease 

data. The plug-in method and the likelihood cross-validation method were used to select the smoothing 

parameter for estimating the probability density of each data, and the performance was evaluated by comparing 

the correct classification rate. 

In both cases, considering that the relationship between only one of the many independent variables and the 

response variable was estimated, the correct classification probability of 0.6 or higher is judged to be a 

satisfactory result. There was no significant difference in performance between the two bandwidth selection 

methods. In general, the cross-validation method had slightly better estimation results, but it was difficult to 

conclude which method was better. 
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