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On Nonparametric Estimation of Data Edges '
Byeong U. Park!

ABSTRACT

Estimation of the edge of a distribution has many important applications.
It is related to classification, cluster analysis, neural network, and statistical
image recovering. The problem also arises in measuring production efficiency
in economic systems. Three most promising nonparametric estimators in the
existing literature are introduced. Their statistical properties are provided,
gsome of which are new. Themes of future study are also discussed.

Keywords: Boundary, frontier function, nonparametric function estimation, pro-
ductivity analysis, Poisson process, Free Disposal Hull, Data Envelopment Anal-
ysis, local polynomial estimator, bandwidth.

1. Introduction

Let g be a real-valued smooth function defined on IR% and consider the set in
IR,d+11

S={(z,y) eRIxR : y < g(z), z€ D}

for some D C IRY. We wish to estimate the boundary function ¢ from a data sét
whose distribution is supported on only S.

Estimation of a boundary is motivated by many practical problems. It may
provide useful tools for determining classification schemes in statistical pattern
recognition. It is closely related to the problem of estimating density level sets,
which may be converted to that of clustering. The problem also arises in scatter-
point image analysis. There, the function g represents, typically, the interface of
areas of differing color tones, perhaps black above the boundary, where no data
values are registered, and grey below. Korostelev and Tysbakov (1993) prov1de
an excellent introduction to optimality issue in this type of problems.
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Another type of applications of this problem may be found in the economic lit-
erature, especially on productivity analysis in the context of measuring efficiency
of enterprises. In that context, the extremal value g(z) represents a hypothetical
upper limit to production or performance at a d-dimensional input level z, and
the efficiency of a production unit with input z and output y is calculated by
g(z) —y. The economic theory underlying efficiency analysis is based on the pio-
neering works of Koopmans (1951) and Debrue (1951) on activity analysis, and
on the first empirical work of Farrell (1957). Shephard (1970) provides a modern
economic formulation of the problem.

In parametric or semiparametric approaches some specific structural assump-
tions are imposed on the function g, such as g(z) = By + Bz, while in nonpara-
metric approaches such restrictions are avoided and it is only assumed that g
belongs to a function space of infinite dimension. We shall focus on the latter in
this paper. Some important works with parametric or semiparametric treatments
are the maximum likelihood estimation of Greene (1980), the instrumental vari-
ables methods of Hausman and Taylor (1981), and the semiparametric optimal
procedures of Park and Simar (1994) and Park, Sickles and Simar (1998, 2000).

In this paper, three most promising nonparametric estimators are considered.
They are the FDH(Free Disposal Hull; Deprins, Simar and Tulkens, 1984), the
DEA(Data Envelopment Analysis; Farrell, 1957) and the local polynomial es-
timators(Hall, Park and Stern, 1998). The first two of these aim at boundary
functions with special structures, namely monotonicity and/or concavity, which
are very common in economic applications. The last one is for fairly general
boundaries. These are introduced in the next section. The statistical properties
which are now available on these estimators are summarized in Section 3 with
some new results. A brief guide to the existing literature are provided there, too.
Several problems for future study are discussed in Section 4.

2. The Nonparametric Estimators

2.1. The FDH estimator

Let P = {(X;,Y;) € REx R : i = 1,2,...} be the data set. The FDH
estimator of § was introduced by Deprins, Simar and Tulkens (1984). It relies
on the free disposability assumption on S, i.e. if (z,y) € § then all pairs (z',7')
such that ' > z and y' < y belong to &, which is equivalent to the assumption
that g is monotone nondecreasing. Here and below, the inequality z' > z for
d-dimensional vectors z and z’ is understood componentwise. If S is interpreted
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as a production set, the totality of all combinations of inputs z and outputs y
that are technically possible, then the free disposability of S means that, in that
production process, if 2 can produce y then all ' > z can produce all 3/ < y.
The estimator of & is then defined as the free disposal hull of the set A

Srpu = UFD{(XiaYi)}

7

where FD(z) for a point z = (21,...,24+1) denotes the free disposal set of z:
FD(z) ={(v1,...,0d41) : V1 > 21, " ,VU4 > 24, Vi+1 < Zg41}

The FDH estimator of S is the set under the “lowest” monotone step function
that lies above all points (X;,Y;)’s.  The lowest monotone step function is taken
as the FDH estimator of g, i.e. ‘

grou(z) = max{y : (z,y) € Srpu}-

Note that this estimator may not be defined at x when there does not exist a
point (X;,Y;) such that X; < z. However, under fairly general data generating
processes such as the one considered in Section 3, the probability that such events
occur is negligible in the limit. Also, it is easy to see that, for a compact subset
K in R*!, the FDH estimator SFDH(QFDH) is the nonparametric maximum like-
lihood estimator of S(g) on the class of all sets S C K with monotone g, provided
(X;,Y;) are iid with the uniform distribution on S. ‘

2.2. The DEA estimator

The DEA(Data Envelopment Analysis) approach was introduced by Farrell
(1957) and popularized in terms of linear programming by Charnes, Cooper and
Rhodes (1978). This approach is based on the assumptions that S is convex as
well as free disposable. The economic implication of assuming S is convex is that
average costs increase monotonically with output, which is termed decreasing
returns to scale in the economic literature. The DEA estimator of S is defined
as the convex-hull of Sppy:

Spea = {(l‘,y) ERIXxR:y< ) &Yi; 2> Y &4X; for some (£,&,...)
i i

such that Y & = 1; 5@0,2’:1,2,...}.
i
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The DEA estimator of S is the set under the “lowest” concave and monotone
function that lies above all points (X;,Y;)’s. The DEA estimator of the boundary
g is then given by

dpEa = max{y : (z,y) € Sppa}-

This estimator also has the same difficulty as the FDH estimator in its definition
at a point x when there is no data smaller than z, but such probablity is negligible
too in the limit under the statistical model considered in Section 3. The DEA
estimator S’DEA(QDEA) is the nonparametric maximum likelihood estimator of
S(g) on the class of all sets S C K with monotone and concave g, provided
(X;,Y;) are iid with the uniform distribution on S.

When the free disposability assumption is dropped, the DEA approach may
yield an inconsistent estimator. In this case, it is natural to use the convex-hull
of the data set 7 as an estimator of the set S, and to define the corresponding
estimator geony of g in the same manner as that gepy and gpra are defined from
Sepn and SDEA, respectively. It is identical to the DEA estimator in the region
where it is increasing. Also, its statistical properties are very similar to those of
the DEA as is illustrated in Section 3.

2.3. The local polynomial estimators

Local polynomial methods are known to offer unsurpassed degree of flexibility
and adaptivity in the context of regression and related problems. See for example
Fan and Gijbels (1996). There is a variety of ways of applying them to density
estimation, for example by using local likelihood techniques (Copas, 1995; Loader,
1996; Hjort and Jones, 1996; Park, Kim and Jones, 2000) or by converting the
density estimation problem to one of regression (Park, Kim, Huh and Jeon, 1998).
They have potentially a great deal to offer in problems of boundary estimation
too. The first attempt was made by Hall, Park and Stern (1998), where the
local polynomial boundary estimators were introduced for the case where d = 1.
Multivariate extension of the local polynomial approaches shall be treated here.
While the FDH and DEA approaches rely on the structural assumptions on S,
monotonicity and/or convexity, the local polynomial estimators are free of these
restrictions.
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2.3.1. The case where d=1

First, we introduce the idea of local polynomial fitting for the case where d = 1.
Multivariate extension shall be discussed later. Assume temporarily that the
boundary is a polynomial of degree p, i.e. g(z;60) = 6 + 017 + -+ + Opa?, and
that data are in the form of n independent random vectors (X;,Y;) having the
uniform distribution on the region S(6) = {(z,y) : 0< <1, 0 <y < g(z;0)}.
Here it is supposed that D = [0,1] and g(z;6) > 0 for all z € D solely for
simplicity of notation, but these assumptions are unimportant. One would then
estimate 8 = (6p, - - .,0,)T by maximizing the likelihood

[1 GO s (Xi, Y3)
=1

where G(6) is the area of S(f) given by fo 2;0) dz. The maximum likelihood
estimator equals the value of § that minimizes G(6) subject to 0 <V; < g(X;;6)
for1<i<n. '

We may construct a nonparametric estimator of g by modifying the prescrip-
tion in the previous paragraph. Suppose now that locally the boundary function
g can be approximated by

g(u) =2 6;(u—g) (2.1)

with §; = g (z) /5! for u in a neighborhood of z. Let I 5, = (z—h/2, z+h/2) for
some h > 0. Then the approximation (2.1) is valid for u € Z; j with remainder
o(h?) when g has p derivatives. Validity of the approximation (2.1) and the
parametric considerations in the previous paragraph suggest the following local
polynomial estimator:

gup(z) =

A ~

where 6 = (g, ... ,0,)T minimizes

G(0;z,h) = {90+91(u—:c)+---+9p(u——w)p}du
Im,h
subject to Y; < ZJ _00;(Xi —x)! for all i: X; € Ly h-
The definition of the local likelihood estimator may be simplified by virtue of
the fact that the first term, g, in the approximating polynomial given at (2.1)
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does not involve u. To illustrate this, let x; equal 1 if j is even and 0 otherwise.
We can write G(6;z,h)/h = 6’0+Z?:1 kj0;(j+1)71277hI. Noting that G(6;z, h)

must be minimized subject to max(®{¥; — 6y — ?:1 0;(X; — )7} <0, we see
that if 61, .. ,ép are known then
fo = max® { ¥; — Z 0;(X; — ) (2.2)
=1

where max(® denotes the maximum over i such that X; € Ty - Define

P
H(by,...,6p) =max® |Y; = > "0, {(Xi —2)’ = 5;(j +1)727907} | . (2.3)
=1

~

It follows then that G(6o,60:...,0,;2,k)/h = H(fy,...,6,). Thus, (41,...,6,)
may be defined as the vector that minimizes H, and then 0o should be defined
by (2.2).

2.3.2. Multivariate extension

Extension of the local polynomial boundary estimation to the case of multi-
dimensional z is treated here. This requires careful notation to keep the expres-
sions simple. We use the summation convention of Einstein: a;2* = Ele a; 2
bijztzd = le 2?21 bijzizj; -+ -. With this notation, whenever an index is re-
peated as a superscript and as a subscript, a summation over the range of that

index is generated. Also, for an index set I we write crz! for the summations
k

over all the indices in I. For example, if I = {i,7,k} then crz! = ¢;52%292
Zgﬂ Z?ﬂ Zlacl=1 CijkZiZj 2k

Let 0y = g(z), 0; = dg(z)/0zi, 0;; = (1/2!)8%g(x)/d7;0z;, and so on. Sup-
pose that g is p-times continuously partially differentiable in a neighborhood of
z. Then ’

gw) =60+ Y Or(u—z)" +o(ju— zf) (2.4)
L|Il=1

as u — z, where [I| denotes the size of the index set I. Define R j, = II%_ (z; —
h/2,z; + h/2) for h > 0. The multivariate version of the local polynomial esti-
mator is defined by grp(z) = 6o where 90, éi, é,-j (z <7), ... minimizes

p
G(H;x,h):/ {60 + Z Or(u —z)} du

Rea,h IjI)=1
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subject to Y; < 6y + ZZIJ:|I|=1 0;(X; — ) for all i X; € Ryp- It should be noted
that the minimization is carried out with respect to g, 6;, 0;;(i < j7), 6i1(1 <
j S k), caey after taking Hji = (91‘]'; gikj = Ujik = iji = 9]“'_7' = gkji = 8ijlc§ etc.

To get analogues of (2.2) and (2.3), let R = (—1/2,1/2)%, and define m; =
fR t; H;izldtl, mi; = fR tit; Hledtl, and so on. Note that there are many m’s
which are zero. For example, m; = 0 for all © and m;; = 0 for all 4 # j. However,
for notational convenience we continue to write m;, m;j, ... instead of 0 in these
cases. We may write then G(6; z,h)/h? = 00+E§=III=1 OrmI A1, Write O for the
vector formed by 6;, 6;;(i < j), 0%(i < j < k), .... It follows that 6k minimizes

P
H(0x) = max(®) |Y; - Z Or {(.Xz — )T - thIII} (2.5)
r:|I|=1 ‘

where max(®) denotes the maximum over i such that X; € Rzn, and that by is
given by

~

p i
fo=max Y, — Y O(X;—=z) 3. (2.6)
I:|I|=1

3. Asymptotic Theory

Boundary estimation usually suffers from inherent bias that arises through
having access only to data that lie on one side of the boundary. Thus, it is very
important to be able to quantify this bias through explicit estimation and adjust-
ment. An adequate solution to this problem requires at least some information
about the distribution of the boundary estimator. In this section, the asymptotic
distributions and the rates of convergence for the estimators introduced in the
previous section are provided. ‘

Some of the work on boundary estimation assumes Poisson-distributed points,
and some assumes a given number, n, of independently distributed points. There
is of course a duality between the two approaches, in which the intensity function
of the former is replaced by n multiplied by the common probability density for
the latter. First-order asymptotic results are generally the same in both contexts.
We shall proceed here in the Poisson setting. |

Let the data set P = {(X;,¥;) € R xR : ¢ = 1,2,...} be generated by a
Poisson process with intensity nX in IR**!, where n > 0 is a scalar and A > 0
is a fixed function on R, Assume that A(z,y) = 0 for y > g(x), and that
we observe those Poisson points (X;,Y;), for 4 > 1, that lie in a layer defined by
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S ={(z,y) : z €D, g(z) —e(z) <y < g(z)}, where ¢ is any positive function
(possibly infinite) bounded away from zero on D. Assume for some a > 0 that A
satisfies, uniformly in z € D,

Nz, y) = a{g(z) -y}~ u(z) + o[{g(z) — y}*7'] (3.1)

as y 1 g(x), where the function > 0 is continuous. Call these assumptions A(a).

The assumptions A(a) have been considered in Hardle, Park and Tsybakov
(1995), and Hall, Park and Stern (1998). Note that & — 1 > —1 denotes the
exponent of the rate at which A\ decreases zero along the boundary. When o < 1,
we are in the case of a sharp (fault-type) boundary. When a > 1, the intensity
decreases to zero smoothly. In the case of the FDH estimator, asymptotic prop-
erties were derived by Park, Simar and Weiner (2000) for d > 1, but only the
case « = 1 is treated there. In fact, Park et al. (2000) established fully general
asymptotic results in terms of measuring production efficiency, which includes the
case where y is multivariate too. Asymptotic properties of the DEA estimator
which are available now are due to Gijbels, Mammen, Park and Simar (1999), but
they are very limited and only for the case where d = 1 and o = 1. Theoretical
properties of the local polynomial estimators were obtained by Hall, Park and
Stern (1998) for the cases d = 1 and a > 0. These existing asymptotic results
for the three estimators shall be discussed in the next three subsections. Also,
some new results on the rates of convergence for the FDH and the DEA, and on
the asymptotic distributions of the local polynomial estimators for general a > 0
and d > 1 shall be provided there.

3.1. The FDH estimator

In the case o = 1, the assumption given at (3.1) reduces to that A(z,y) =
p(z) + o(1) uniformly in £ € D as y 1 g(z). Thus, A(z,9(z)) = u(z). Assume
that g is continously partially differentiable, and that g is strictly increasing in
each component, i.e. dg(z)/dz; > 0 for each i = 1,...,d. Call these conditions
Crpu. Write g1(z) = I1¢_,0g(z)/0z;. The following theorem demonstrates the
asymptotic distribution of the FDH estimator, which is essentially due to Park,
Simar and Weiner (2000).

Theorem 3.1. Assume A(1) and Cppu. If u(z) > 0, then n*/ ) {grpu(z) —
g(z)} converges in law to a random variable Zppy whose distribution is given by

Grpu(z) = exp[—u(z)(—2)" /{g1 () (d + 1)!}]
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2.3.1. The case whered=1 .

First, we introduce the idea of local polynomial fitting for the case where d = 1.
Multivariate extension shall be discussed later. Assume temporarily that the
boundary is a polynomial of degree p, i.e. g(z;0) = g + 612 + --- + OpzP, and
that data are in the form of n independent random vectors (Xj,Y;) having the
uniform distribution on the region S(8) = {(z,y) : 0<z <1, 0 <y <g(z;0)}.
Here it is supposed that D = [0,1] and g(z;6) > 0 for all z € D solely for
simplicity of notation, but these assumptions are unimportant. One would then
estimate 6 = (6, .. .,0,)T by maximizing the likelihood

n

[1606) s (Xi, Y3)

i=1
where G(0) is the area of §(0) given by fo z;0) dz. The maximum likelihood
estimator equals the value of § that minimizes G(6) subject to 0 < ¥; < g(X; 0)
for1 <i<n.

We may construct a nonparametric estimator of g by modifying the prescrip-

tion in the previous paragraph. Suppose now that locally the boundary function
g can be approximated by

u) = Y 60;(u—z) (2.1)
§=0

with 8; = gU)(z)/4! for u in a neighborhood of z. Let I, 5 = (z—h/2,z+h/2) for
some h > 0. Then the approximation (2.1) is valid for u € I, with remainder
o(hP) when g has p derivatives. Validity of the approximation (2.1) and the
parametric considerations in the previous paragraph suggest the following local
polynomial estimator:

gL (z) = bo
where 6 = (fy, ... ,ép)T minimizes

G(0;3,h) :/I {00+ 01(u— ) + - + Op(u — 2)P} du

subject to Y; < Z‘?ZO 0;(X; — z)? for all & X; € Ty p.
The definition of the local likelihood estimator may be simplified by virtue of
the fact that the first term, g, in the approximating polynomial given at (2.1)
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does not involve u. To illustrate this, let x; equal 1 if j is even and 0 otherwise.
We can write G(0;z,h)/h = 00+ 3_7_, #;0;(j+1)"'277h/. Noting that G(6; z, h)

must be minimized subject to max(®{¥; — 6, — ?:1 0;(X; —x)7} <0, we see
that if 6y, ... ,ép are known then
fo = max\® { y; — Z 0;(X; — ) (2.2)
J=1

where max(®) denotes the maximum over i such that X; € Iy p,. Define

p
H(B, ..., 0) = max® |V, = 3" 0; {(X; —2) — w;(j + 1) 712790} | . (23)
J=1

A

It follows then that G(6y,0;...,0p;z,h)/h = H(é,...,6,). Thus, 61,...,6)
may be defined as the vector that minimizes H, and then 6y should be defined
by (2.2).

2.3.2. Multivariate extension

Extension of the local polynomial boundary estimation to the case of multi-
dimensional z is treated here. This requires careful notation to keep the expres-
sions simple. We use the summation convention of Einstein: a;2z* = 25:1 023!
bijzizj = ;_1:1 Z;'l:1 bijziz;; »++. With this notation, whenever an index is re-
peated as a superscript and as a subscript, a summation over the range of that
index is generated. Also, for an index set I we write c;z! for the summations
over all the indices in I. For example, if I = {i,4,k} then c;z/ = cijp?tZi 2k =
S Sy Yo Cijki%iZk

Let 6y = g(x), 0; = 0g(z)/0x;, 0; = (1/2!)0%g(z)/0x;0;, and so on. Sup-
pose that g is p-times continuously partially differentiable in a neighborhood of
z. Then

P
g(w) =6+ > Or(u—z) +o(lu — z[P) (2.4)
I:|I|=1

as u — x, where |I| denotes the size of the index set I. Define Ry ), = IT¢_| (z; —
h/2,x; + h/2) for h > 0. The multivariate version of the local polynomial esti-
mator is defined by grp(z) = 6y where 90, éi, @ij (¢ <7), ... minimizes

P
G(ﬁ;w,h)-——/ {60 + Z Or(u — z)'} du

Rah I)I=1
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subject to Y; < 8 + ZZ;:|I|:1 0r(X; — z)f for all i: X; € Re,n- It should be noted
that the minimization is carried out with respect to g, 8;, 8;;(1 < 7), Osr(i <
j S k), ‘e after taking 9]',' = Qij; Oikj = Ujik = Ojki = ekij = 9kji == 9ijk§ etc.

To get analogues of (2.2) and (2.3), let R = (—1/2,1/2)%, and define m; =
fR t; Hflzldtl, mi; = fR tit; Hf___ldtl, and so on. Note that there are many m’s
which are zero. For example, m; = 0 for all ¢ and m;; = 0 for all i # j. However,
for notational convenience we continue to write m;, m;;, ... instead of 0 in these
cases. We may write then G(6; z, h)/h¢ 200+Z§:|I|:1 grmI Al Write 6 for the
vector formed by 6;, 0;;(i < j), 0455(1 < j < k), ... Tt follows that 0k minimizes

p
H(0x) = max® |Y; — Z 01 {(X, —2)f mlhm} (2.5)
I:|I|=1

where max(®) denotes the maximum over i such that X; € Ry,n, and that 6y is
given by

P
fo = max(® Y; - Z 0r(X; —z)t ). (2.6)
I:|I|=1

3. Asymptotic Theory

Boundary estimation usually suffers from inherent bias that arises through
having access only to data that lie on one side of the boundary. Thus, it is very
important to be able to quantify this bias through explicit estimation and adjust-
ment. An adequate solution to this problem requires at least some information
about the distribution of the boundary estimator. In this section, the asymptotic
distributions and the rates of convergence for the estimators introduced in the
previous section are provided.

Some of the work on boundary estimation assumes Poisson-distributed points,
and some assumes a given number, n, of independently distributed points. There
is of course a duality between the two approaches, in which the intensity function
of the former is replaced by n multiplied by the common probability density for
the latter. First-order asymptotic results are generally the same in both contexts.
We shall proceed here in the Poisson setting. -

Let the data set P = {(X;,Y;) € R¢ xR : i = 1,2,...} be generated by a
Poisson process with intensity nA in R4, where n > 0 is a scalar and X\ > 0
is a fixed function on IR%t!. Assume that A(z,y) = 0 for y > g(x), and that
we observe those Poisson points (X;,Y;), for ¢ > 1, that lie in a layer defined by
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S ={(z,y) : v €D, g(z) — e(z) <y < g(z)}, where ¢ is any positive function
(possibly infinite) bounded away from zero on D. Assume for some o > 0 that A
satisfies, uniformly in z € D,

Mz, y) = afg(z) — 4} u(e) + ol{g(z) — y}* ] (3.1)

as y T g(z), where the function 1 > 0 is continuous. Call these assumptions A(a).

The assumptions A(c) have been considered in Hirdle, Park and Tsybakov
(1995), and Hall, Park and Stern (1998). Note that o — 1 > —1 denotes the
exponent of the rate at which A decreases zero along the boundary. When o < 1,
we are in the case of a sharp (fault-type) boundary. When « > 1, the intensity
decreases t0 zero smoothly. In the case of the FDH estimator, asymptotic prop-
erties were derived by Park, Simar and Weiner (2000) for d > 1, but only the
case o = 1 is treated there. In fact, Park et al. (2000) established fully general
asymptotic results in terms of measuring production efficiency, which includes the
case where y is multivariate too. Asymptotic properties of the DEA estimator
which are available now are due to Gijbels, Mammen, Park and Simar (1999), but
they are very limited and only for the case where d = 1 and o = 1. Theoretical
properties of the local polynomial estimators were obtained by Hall, Park and
Stern (1998) for the cases d = 1 and @ > 0. These existing asymptotic results
for the three estimators shall be discussed in the next three subsections. Also,
some new results on the rates of convergence for the FDH and the DEA, and on
the asymptotic distributions of the local polynomial estimators for general o > 0
and d > 1 shall be provided there.

3.1. The FDH estimator

In the case a = 1, the assumption given at (3.1) reduces to that A(z,y) =
p(z) + o(1) uniformly in z € D as y 1 g(z). Thus, A(z,g(z)) = p(z). Assume
that g is continously partially differentiable, and that g is strictly increasing in
each component, i.e. dg(z)/0z; > 0 for each i = 1,...,d. Call these conditions
Crpu. Write g1(z) = H?zlag(x') /0z;. The following theorem demonstrates the
asymptotic distribution of the FDH estimator, which is essentially due to Park,
Simar and Weiner (2000).

Theorem 3.1. Assume A(1) and Crpr. If p(z) > 0, then n'/(4D) {Gppy (z) —
9(z)} converges in law to a random variable Zypy whose distribution is given by

Grpu(2) = exp[—p(z) (—2)™ /{g1 (2)(d + 1)!}]
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for z < 0 and Gypu(z) =1 for z > 0.

Tt follows from the theorem that asymptotically n*/(¢+1{g(z) — grpu(z)}
follows a Weibull distribution with {g1(z)(d + 1)!/u(z)}/(**D) as a scale, and
(d 4+ 1) as a shape parameter. Since the r-th moment of a standard Weibull
distribution with a shape parameter c is given by I' ((r + ¢)/c)), the asymptotic
r-th moment of grpm(z) is |

r/(d+1)
(—1)rnr/(@+) {gl(wl((i;r 1)!} L (——d;:“lL1>,

It may be proved that, under the assumptions A(c), instead of A(1), the
FDH estimator has the convergence rate n~1/(@+2) for boundaries that satisfy a
Lipschitz condition of order 1. In fact, this convergence rate is minimax-optimal
in a pointwise sense under the Lipschitz condition, which may be proved as in
Hardle, Park and Tsybakov (1995). We point out that existence and continuity
of the partial derivatives which together are stronger than the Lipschitz condition
are imposed in Theorem 3.1 only so that the limit distribution might be identified.

Statistical properties of SFDH as a set estimator of & when S is compact
have been also studied. We refer to Korostelev, Simar and Tsybakov (1995a,b)
for those results. We close this subsection by pointing out that if one of the

partial derivatives 8g(z)/0z; is zero then grpm(z) converges to g(z) faster than
—1/(d+1)
n )

3.2. The DEA estimator

Asymptotic distribution of the DEA estimator is available only for the case
where d = 1 and «@ = 1. The following theorem is due to Gijbels, Mammen,
Park and Simar (1999). To state the theorem, we assume that g is twice con-
tinuously differentiable, monotone and strictly concave, i.e. g¢”(z) < 0. Call
these assumptions Cpga. Write go(z) = —g"(2)/2. For z < 0 and v > 0, let

h(v, z;2) = (1/2)u(2){g2(z)v* — 2} exp[—(1/6)(z)g2(z) v {g2(z)v? - 2}°].

Theorem 3.2. Assume A(1) and Cpga. If () > 0, then n?*{gppa (z)~g(z)}
converges in law to a random variable Zpra whose distribution is given by :

oo
G’DEA(z)Z/ h(v, z;z) dv
0

for z < 0 and Gpga(z) =1 for z > 0.
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The asymptotic distribution function Gpga(z) is continuous at z = 0. To see
this, note that for —e < z < 0 the integrand h(v, z; z) is bounded by

(1/2)n(@){g2(z)v” + e} exp{—(1/6)u(z) g (2)v’}

which is integrable over v € (0, 00). Thus, lim,1+9 Gpga(z) = [, lim.o h(v, z; ) dv
=1

One may obtain a simplified expression for the limit distribution which is
convenient for éalculating the asymptotic moments. To find it, make transforma-
tion: v — u by v = {—z/gz(m)}1/2u for the integral at Theorem 3.1. By a simple
algebraic manipulation one may see that n%/3{u(z)?/g2(z)}*/*{ipEa () — g(z)}
converges in distribution to a random variable Wpga whose distribution function
is given by

o0
P(Wpga < 2) =/ o(u, z;z) du
0

for z < 0, where p(u, z;z) = (1/2)(—2)3/2(1+u?) exp{—(1/6)(—2)*/?(u+u"1)3}.
The r-th moment of Wpgy is easily obtained by an elementary calculation, from
which the r-th asymptotic moment of gpga (z) may be derived as

r/
(_l)rn——2r/3 4. 6(27‘/3)——1 {%} 3]{:]_—‘ (%) k('z(::ll))"

The asymptotic distribution of the DEA estimator for multivariate z is un-
known. However, its rate of convergence was found by Kneip, Park and Simar
(1998) in very general statistical models which include the case of multivariate
z. When o = 1 and z is d-dimensional, it was shown that gpga(z) converges to
g(z) at the rate n=2/(4+2) under the condition that g satisfies a Lipschitz condi-
tion of order 1 on its first derivative. (In fact, it was also shown that the rate
can not be improved further by imposing more smoothness assumptions on g.)
This result may be extended to the case where o > 0. It can be shown that
the DEA estimator achieves the convergence rate n~%/(¢+2¢) under A(a) and the
Lipschitz condition on the boundaries. The rate is minimax-optimal in a point-
wise sense, which may be proved by the techniques used in Hardle, Park and
Tsybakov (1995).

A closely related estimator, geony (the convex-hull estimator) mentioned in
Subsection 2.2, may be shown to have the same limit law as gpga under weaker
conditions where monotonicity of g drops out. Related work on the convex-hull
method includes that of Nagaev (1995) on properties of the convex-hull in the
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case where the Poisson point process has an unbounded convex domain, and that
of Rényi and Sulanke (1963, 1964), Efron (1965), Groeneboom (1988), and Cabo
and Groeneboom (1994) on the number of vertices (and other quantities) of the
convex-hull of random points. A generalization of the convex-hull method in
boundary estimation was treated by Hall, Park and Turlach (2001).

3.3. The local polynomial estimator

Asymptotic properties of the local polynomial estimators were investigated by
Hall, Park and Stern (1998) for the case where d = 1 and « > 0. Here, they are
generalized to the case where d > 1. The p-th order local polynomial estimators
defined as at (2.2) and (2.6) are considered. Assume g has p+1 continuous partial
derivatives. Let h be asymptotic to Cn~1/{d+e(P+1} for some constant C' > 0.
Call these conditions Crp. The size of the bandwidth optimizes the convergence
rate of gip to g.

To state the theorem, define w = /J,(:E)l/aC(d/aHpH. Let Wi, Wo,... be
independent random variables which are exponentially distributed with density
e~ for w > 0. Let v denote Euler’s constant, i.e. v = limkﬁoo{Z?;ll(l/j) -
log k}. Define for j > 1 :

00 r—1
—a~! {Zrl(Wi —1) 45— ZNH :
i=r i=1

With this definition (Ui, Us,...) obey the ordering 0 < U; < Uy < ---, and
have the joint distribution of consecutive Type 2 extreme values in the sense of
Gnedenko (1943). See Hall (1978). ‘

Next, let V1, V5, ... be independent random variables, independent of W1, W,
..., having the uniform distribution on [~1/2,1/2]¢. Let d;, dij, dijk, ... be se-
quences with multiple indices such that dj; = d;j; dik; = djix = djr; = diij =
dij; = dijk; etc, where 1 <4< d, 1 <j<d, 1<k<d,.... Let dx be the vector
formed by d;, d”(z <17, dzjk(’t <j<k),.... Define ‘

U, =exp

p
. Z I I I
S(dk) = 1§151<foo Urt I:|I|=1 & (VT —m ) - C‘)91’p+1VTp+1

where I, 1 denotes an index set of size p + 1. Let Dg denote the value of dg
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that maximizes S(dg). Define

p
. Z I I
Do=- 1S17I*1<foo Ut | Ij=1 Drve = we[mlwp“

Theorem 3.3. Assume A(a) and Crp. If u(x) > 0, then
{C (@)Y onE IS eE D g o (2) — g(2)} = Do
in distribution.

The theorem may be proved as in Hall, Park and Stern (1998). The conver-
gence rate n~(PTD/{d+e(@+} eyinced by Theorem 3.3 is minimax-optimal in a
point pointwise sense for boundaries that have p derivatives and satisfy a Lips-
chitz condition of order 1 on the p-th derivative. This can be also proved as in
Héardle, Park and Tsybakov (1995).

The representation for the limit law of the local polynomial estimators pre-
sented in Theorem 3.3 enables computation of numerical approximations to the
moments of the asymptotic distribution. The result may be applied directly to
correct for bias, or more generally to compute empirical, bias-adjusted, confidence
intervals for the unknown boundary.

4. Other Related Works and Future Research

Bias correction is a particularly important problem in boundary estimation.
This problem was tackled by Park, Simar and Weiner (1998) for the FDH, Gijbels,
Mammen, Park and Simar (1999) for the DEA, and Hall, Park and Stern (1998)
for the local polynomial estimators. But, the methods of correcting for bias
considered there are restrictive and specialized to those estimators. A rather
general approach that has versions for any boundary estimator was suggested by
Hall and Park (2000). It is a new form of the bootstrap, termed the translation
bootstrap, involving averaging over repeated empirical translations. It should be
noted that the usual bootstrap procedure does not produce even asymptotically
consistent results since it is unable to accurately capture the relationship among
extremes of a resample drawn by resampling in the usual way. The subsampling
bootstrap approaches of Bickel, Gotze and van Zwet (1997) and Politis, Romano
and Wolf (1999) would work, but for effective performance they require empirical
choice of subsample size.
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Open issues for future research include (i) searching for asymptotic distri-
bution of the DEA estimator when d > 1 and/or o > 0 and that of the FDH
when o > 0; (ii) bandwidth selection for the local polynomial approaches; (iii)
developing theory for estimating derivatives of a boundary; (iv) bias correction.

Extension of Theorem 3.1 to the case where a > 0 does not seem difficult,
but that of Theorem 3.2 to the multivariate case appears to be a very difficult
problem because of the level of complexity it requires. Regarding the second
issue, the well-known techniques for choosing bandwidth in conventional curve
estimation problems include plug-in rules, cross-validation and the bootstrap. In
the context of boundary estimation plug-in approaches are not promising since
one can hardly expect explicit expression for the multiplicative constant in the
formula for the asymptotically optimal bandwidth. The idea of cross-validation
seems also difficult to implement since there exists no empirical substitute for the
cross-product contribution to the integrated squared error. Bootstrap procedures
with relevant resampling schemes or the translation bootstrap techniques of Hall
and Park (2000) might be successful.

Estimating derivatives of a boundary is also an important problem. Recent
work on derivative estimation includes that of Park (2001). As in regression
and density settings, the problem arises when one wants to correct for bias and
to construct empirical confidence intervals for the unknown data edge. It is an
interesting problem in its own right due to some important interpretations of
boundary derivatives in economic applications.
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