• Title/Summary/Keyword: nonlocal Timoshenko beam theory

Search Result 43, Processing Time 0.015 seconds

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • Devnath, Indronil;Islam, Mohammad Nazmul;Siddique, Minhaj Uddin Mahmood;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.

Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory

  • Simsek, Mesut
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.59-76
    • /
    • 2011
  • Dynamic analysis of an embedded single-walled carbon nanotube (SWCNT) traversed by a moving nanoparticle, which is modeled as a moving load, is investigated in this study based on the nonlocal Timoshenko beam theory, including transverse shear deformation and rotary inertia. The governing equations and boundary conditions are derived by using the principle of virtual displacement. The Galerkin method and the direct integration method of Newmark are employed to find the dynamic response of the SWCNT. A detailed parametric study is conducted to study the influences of the nonlocal parameter, aspect ratio of the SWCNT, elastic medium constant and the moving load velocity on the dynamic responses of SWCNT. For comparison purpose, free vibration frequencies of the SWCNT are obtained and compared with a previously published study. Good agreement is observed. The results show that the above mentioned effects play an important role on the dynamic behaviour of the SWCNT.

Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory

  • Xiaozhong Zhang;Jianfeng Li;Yan Cui;Mostafa Habibi;H. Elhosiny Ali;Ibrahim Albaijan;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.293-306
    • /
    • 2023
  • This article focuses on the study of the buckling behavior of two-dimensional functionally graded (2D-FG) nanosize tubes, including porosity, based on the first shear deformation and higher-order theory of the tube. The nano-scale tube is simulated using the nonlocal gradient strain theory, and the general equations and boundary conditions are derived using Hamilton's principle for the Zhang-Fu's tube model (as a higher-order theory) and Timoshenko beam theory. Finally, the derived equations are solved using a numerical method for both simply-supported and clamped boundary conditions. A parametric study is performed to investigate the effects of different parameters, such as axial and radial FG power indices, porosity parameter, and nonlocal gradient strain parameters, on the buckling behavior of the bi-dimensional functionally graded porous tube. Keywords: Nonlocal strain gradient theory; buckling; Zhang-Fu's tube model; Timoshenko theory; Two-dimensional functionally graded materials; Nanotubes; Higher-order theory.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

Dynamic modeling of nonlocal compositionally graded temperature-dependent beams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.141-164
    • /
    • 2018
  • In this paper, the thermal effect on buckling and free vibration characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and mode number on the critical buckling temperature and normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.121-133
    • /
    • 2017
  • This paper proposes an analytical solution method for free vibration of curved functionally graded (FG) nonlocal beam supposed to different thermal loadings, by considering porosity distribution via nonlocal elasticity theory for the first time. Material properties of curved FG beam are assumed to be temperature-dependent. Thermo-mechanical properties of porous FG curved beam are supposed to vary through the thickness direction of beam and are assumed to be temperature-dependent. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG structures. The rule of power-law is modified to consider influence of porosity according to even distribution. The governing equations of curved FG porous nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is used to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loadings with simply supported boundary condition. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality, porosity volume fractions, type of temperature rising, gradient index, opening angle and aspect ratio of curved FG porous nanobeam on the natural frequency are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.