Browse > Article
http://dx.doi.org/10.12989/aas.2018.5.1.141

Dynamic modeling of nonlocal compositionally graded temperature-dependent beams  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Fardshad, Ramin Ebrahimi (Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University)
Publication Information
Advances in aircraft and spacecraft science / v.5, no.1, 2018 , pp. 141-164 More about this Journal
Abstract
In this paper, the thermal effect on buckling and free vibration characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and mode number on the critical buckling temperature and normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.
Keywords
thermal buckling; Timoshenko beam theory; vibration; functionally graded material; nonlocal elasticity theory;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F. And Rastgoo, A. (2008a), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 015044.   DOI
2 Ebrahimi, F. and Abbas, R. (2008b), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin-Wall. Struct., 46(12), 1402-1408.   DOI
3 Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009a), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech.-A/Sol., 28(5), 962-973.   DOI
4 Ebrahimi, F., Mohammad, H.N. and Abbas, R. (2009b), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol., 23(8), 2107-2124.   DOI
5 Ebrahimi, F. and Rastgoo, A. (2008c), "Free vibration analysis of smart FGM plates", J. Mech. Syst. Sci. Eng., 2(2), 94-99.
6 Ebrahimi, F., Rastgoo, A. and Kargarnovin, M.H. (2008), "Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers", J. Mech. Sci. Technol., 22(6), 1058-1072.   DOI
7 Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870.   DOI
8 Ebrahimi, F., Ghasemi, F. and Salari, E. (2016a), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccan., 51(1), 223-249.   DOI
9 Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronaut., 116, 117-125.   DOI
10 Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1435-1444.   DOI
11 Ebrahimi, F. and Salari, E. (2015c), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B, 79, 156-169.   DOI
12 Ebrahimi, F. and Barati, M.R. (2016l), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279.   DOI
13 Ebrahimi, F. and Barati, M.R. (2016m), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", J. Eng. Sci., 107, 183-196.   DOI
14 Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015b), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29, 1207-1215.   DOI
15 Ebrahimi, F. and Salari, E. (2015a), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007.   DOI
16 Ebrahimi, F. and Salari, E. (2015b), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut., 113, 29-50.   DOI
17 Ebrahimi, F. and Salari, E. (2015d), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105, 151-181.
18 Ebrahimi, F. and Salari, E. (2015e), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380.   DOI
19 Ebrahimi, F. and Salari, E. (2015f), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. B, 78, 272-290.   DOI
20 Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397.   DOI
21 Ebrahimi, F. and Barati, M.R. (2016q), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843.   DOI
22 Ebrahimi, F. and Barati, M.R. (2016n), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 1-13.
23 Ebrahimi, F. and Barati, M.R. (2016o), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792.   DOI
24 Ebrahimi, F. and Barati, M.R. (2016p), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", J. Smart Nano Mater., 7(2), 69-90.   DOI
25 Ebrahimi, F. and Barati, M.R. (2016r), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 1-12.
26 Ebrahimi, F. and Barati, M.R. (2016s), "On nonlocal characteristics of curved inhomogeneous Euler-Bernoulli nanobeams under different temperature distributions", Appl. Phys. A, 122(10), 880.   DOI
27 Ebrahimi, F. and Barati, M.R. (2016t), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intell. Mater. Syst. Struct., 1045389X16672569.
28 Ebrahimi, F. and Barati, M.R. (2016u), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910.   DOI
29 Ebrahimi, F. and Barati, M.R. (2016v), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 1-21.
30 Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.   DOI
31 Ebrahimi, F. and Barati, M.R. (2017b), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182.   DOI
32 Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29, 1207-1215.   DOI
33 Ebrahimi, F., Ehyaei, J. and Babaei, R. (2016), "Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation", Adv. Mater. Res., 5(4), 245-261.   DOI
34 Ebrahimi, F. and Jafari, A. (2016), "Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory", Adv. Mater. Res., 5(4), 261-276.
35 Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84.   DOI
36 Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B, 79, 156-169.   DOI
37 Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380.   DOI
38 Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131(9), 346.   DOI
39 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386.   DOI
40 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016c), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccan., 51(4), 951-977.   DOI
41 Ebrahimi, F. and Barati, M.R. (2016b), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014.   DOI
42 Ebrahimi, F. and Barati, M.R. (2016c), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", J. Smart Nano Mater., 1-25.
43 Ebrahimi, F. and Barati, M.R. (2016d), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84.   DOI
44 Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
45 Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690.   DOI
46 Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19.   DOI
47 Ebrahimi, F. and Ali, D. (2017), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293.   DOI
48 Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. B, 78, 272-290.   DOI
49 Ebrahimi, F. and Mohsen, D. (2016), "Dynamic modeling of embedded curved nanobeams incorporating surface effects", Coupled Syst. Mech., 5(3), 255-267.   DOI
50 Ebrahimi, F., Mohammad, R.B. and Ali, D. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182.   DOI
51 Ebrahimi, F., Mohammad, R.B.and Ali, D. (2017), "Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects", Wav. Rand. Compl. Med., 1-21.
52 Eltaher, M.A., Samir, A.E. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420.   DOI
53 Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201.   DOI
54 Eltaher, M.A., Samir, A.E. and Mahmoud, F.F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88.   DOI
55 Eringen, A.C. (1972b), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16.   DOI
56 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56-58.   DOI
57 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
58 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", J. Eng. Sci., 10(3), 233-248.   DOI
59 Fallah, A. and Aghdam, M.M. (2012), "Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation", Compos. Part B: Eng., 43(3), 1523-1530.   DOI
60 Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350.   DOI
61 Ke, L.L., Wang, Y.S. Yang, J. and Sritawat, K. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", J. Eng. Sci., 50(1), 256-267.   DOI
62 Kim, Y.W. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vibr., 284(3), 531-549.   DOI
63 Lee, Z., Ophus, C., Fischer, L.M., Nelson-Fitzpatrick, N., Westra, K.L., Evoy, S., Radmilovic, V., Dahmen, U. and Mitlin, D (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", Nanotechnol., 17(12), 3063.   DOI
64 Ma, L.S. and Lee, D.W. (2012), "Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading", Eur. J. Mech.-A/Sol., 31(1), 13-20.   DOI
65 Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Phys. E: Low-Dimens. Syst. Nanostruct., 42(7), 1944-1949.   DOI
66 Mahi, A., Bedia, E.A., Tounsi, A. And Mechab, I. (2010), "An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887.   DOI
67 Peddieson, J., George, R.B. and Richard, P. (2003), "Application of nonlocal continuum models to nanotechnology", J. Eng. Sci., 41(3), 305-312.   DOI
68 Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499.   DOI
69 Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", J. Eng. Sci., 77, 55-70.   DOI
70 Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386.   DOI
71 Tauchert, T.R. (1974), Energy Principles in Structural Mechanics, McGraw-Hill, New York, U.S.A.
72 Thermophysical Properties Research Center (1967), Thermophysical Properties of High Temperature Solid Materials, Elements-Pt. 1, Ed. Yeram Sarkis Touloukian, Macmillan, 1.
73 Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301.   DOI
74 Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), 205430.   DOI
75 Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242.   DOI
76 Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659.   DOI
77 Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. For., 492.
78 Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425.   DOI
79 Ebrahimi, F. and Hosseini, S.H.S. (2016c), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625.   DOI
80 Ebrahimi, F. and Nasirzadeh, P. (2015), "A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method", J. Theoret. Appl. Mech., 53(4), 1041-1052.
81 Ebrahimi, F. and Barati, M.R. (2016i), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., Just-Accepted.
82 Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 40(5), 535-547.   DOI
83 Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 1077546316646239.
84 Ebrahimi, F. and Barati, M.R. (2016h), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 1-16.
85 Ebrahimi, F. and Barati, M.R. (2016j), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
86 Ebrahimi, F. and Barati, M.R. (2016k), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14.   DOI
87 Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates", Appl. Phys. A, 122(10), 922.   DOI
88 Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443.   DOI
89 Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228.   DOI
90 Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329.   DOI
91 Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Phys. E: Low-Dimens. Syst. Nanostruct., 41(9), 1651-1655.   DOI
92 Civalek, O., Cigdem, D. and Bekir, A. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl. 15(2), 289-298.
93 Civalek, O. and Cigdem, D. (2011), "Bending analysis of microtubules using nonlocal euler-bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067.   DOI