Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.2.139

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem  

Devnath, Indronil (Department of Civil and Environmental Engineering, North South University)
Islam, Mohammad Nazmul (Department of Civil and Environmental Engineering, North South University)
Siddique, Minhaj Uddin Mahmood (Nippon Koei Bangladesh)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in nano research / v.12, no.2, 2022 , pp. 139-150 More about this Journal
Abstract
This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.
Keywords
analytical solution; Castigliano's theorem; Eringen's nonlocal elasticity theory; Euler-Bernoulli beam theory; static displacements; Timoshenko beam theory;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Vinyas, M., Kattimani, S.C. and Joladarashi, S. (2018a), "Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods", J. Therm. Stress., 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.   DOI
2 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
3 Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked microbeams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.   DOI
4 Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 113-126. https://doi.org/10.12989/anr.2017.5.2.113.   DOI
5 Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.   DOI
6 Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018b), "Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment", Mater. Res. Express, 5(12), 125702.   DOI
7 Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.   DOI
8 Civalek, O ., Uzun, B., Yayli, M.O . and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.   DOI
9 Paola, M.D., Failla, G. and Zingales, M. (2014), "Mechanically based nonlocal Euler-Bernoulli beam model", J. Nanomech. Micromech., 4(1), A4013002. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000077.   DOI
10 Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475).   DOI
11 Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nanostructures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.   DOI
12 Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.   DOI
13 Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.   DOI
14 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
15 Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434.   DOI
16 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.049.   DOI
17 Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589.   DOI
18 Vinyas, M. and Kattimani, S.C. (2017c), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.   DOI
19 Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.   DOI
20 Vinyas, M. and Kattimani, S.C. (2017a), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.   DOI
21 Akbas, S.D. (2019a), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392.   DOI
22 Hibbeller, R.C. (2016), Mechanics of Materials, Pearson Educacion, London, U.K.
23 Karlicic, D., Murmu, T., Adhikari, S. and McCarthy, M. (2016), Non-local Structural Mechanics, John Wiley & Sons, New Jersey, U.S.A.
24 Nguyen, N.T., Kim, N.I. and Lee, J. (2015), "Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams", Finite Elem. Anal. Des., 106, 65-72. https://doi.org/10.1016/j.finel.2015.07.012.   DOI
25 Nikam, R.D. and Sayyad, A.S. (2018), "A unified nonlocal formulation for bending, buckling and free vibration analysis of nanobeams", Mech. Adv. Mater. Struct., 27(10), 807-815. https://doi.org/10.1080/15376494.2018.1495794.   DOI
26 Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.   DOI
27 Akbas, S.D. (2016b), "Forced vibration analysis of viscoelastic nanobeams embeddedin an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.   DOI
28 Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.   DOI
29 Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.   DOI
30 Akbas, S.D. (2018a), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.   DOI
31 Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng. 40, 392. https://doi.org/10.1007/s40430-018-1315-1.   DOI
32 Akbas, S.D. (2019b), "Longitudinal forced vibration analysis of porous a nanorod", J. Eng. Sci. Des., 7(4), 736-743. https://doi.org/10.21923/jesd.553328.   DOI
33 Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.   DOI
34 Alotta, G., Failla, G. and Zingales, M. (2014), "Finite element method for a nonlocal Timoshenko beam model", Finite Elem. Anal. Des., 89, 77-92. https://doi.org/10.1016/j.finel.2014.05.011.   DOI
35 Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.   DOI
36 Pradhan, S.C. (2012), "Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory", Finite Elem. Anal. Des., 50, 8-20. https://doi.org/10.1016/j.finel.2011.08.008.   DOI
37 Akbas, S.D. (2017c), Static, Vibration, and Buckling Analysis of Nanobeams, In Nanomechanics, Intech, Rijeka, Croatia.
38 Barretta, R. and Marotti de Sciarra, F. (2015), "Analogies between nonlocal and local Bernoulli-Euler nanobeams", Arch. Appl. Mech., 85(1), 89-99. https://doi.org/10.1007/s00419-014-0901-7.   DOI
39 Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computat. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040.   DOI
40 Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solid. Struct., 38(42-43), 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7.   DOI
41 Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.   DOI
42 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI
43 Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.   DOI
44 Vinyas, M. and Kattimani, S.C. (2017b), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.   DOI