• Title/Summary/Keyword: nonlinear wave equation

Search Result 262, Processing Time 0.031 seconds

A Study on the Extension of Mild Slope Equation (완경사 방정식의 확장에 관한 연구)

  • 천제호;김재중;윤항묵
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.18-24
    • /
    • 2004
  • In this study, the Mild slope equation is extended to both rapidly varying topography and nonlinear waves, using the Hamiltonian principle. It is shown that this equation is equivalent to the modified mild-slope equation (Kirby and Misra, 1998) for small amplitude wave, and it is the same form with the nonlinear mild-slope equation (Isobe, 1994) for slowly varying bottom topography. Comparing its numerical solutions with the results of some hydraulic experiments, there is good agreement between them.

APPLICATION OF EXP-FUNCTION METHOD FOR A CLASS OF NONLINEAR PDE'S ARISING IN MATHEMATICAL PHYSICS

  • Parand, Kourosh;Amani Rad, Jamal;Rezaei, Alireza
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.763-779
    • /
    • 2011
  • In this paper we apply the Exp-function method to obtain traveling wave solutions of three nonlinear partial differential equations, namely, generalized sinh-Gordon equation, generalized form of the famous sinh-Gordon equation, and double combined sinh-cosh-Gordon equation. These equations play a very important role in mathematical physics and engineering sciences. The Exp-Function method changes the problem from solving nonlinear partial differential equations to solving a ordinary differential equation. Mainly we try to present an application of Exp-function method taking to consideration rectifying a commonly occurring errors during some of recent works.

NEW TRAVELING WAVE SOLUTIONS TO THE SEVENTH-ORDER SAWADA-KOTERA EQUATION

  • Feng, Jishe
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1431-1437
    • /
    • 2010
  • We use the (G'/G)-expansion method to seek the traveling wave solution of the Seventh-order Sawada-Kotera Equation. The solutions that we get are more general than the solutions given in literature. It is shown that the (G'/G)-expansion method provides a very effective and powerful mathematical tool for solving nonlinear equations in mathematical physics.

Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • 박종천;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • Park, Jong-Chun;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (1): Modeling of Nonlinear Cavity Acoustics and its Evolution

  • Lee, Gil-Yong;Yoon, Woong-Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.26-32
    • /
    • 2006
  • This paper targets a direct and quantitative prediction of characteristics of unstable waves in a combustion chamber, which employs the governing equations derived in terms of amplification factors of flow variables. A freshly formulated nonlinear acoustic equation is obtained and the analysis of unsteady waves in a rocket engine is attempted. In the present formalism, perturbation method decomposes the variables into time-averaged part that can be obtained easily and accurately and time-varying part which is assumed to be harmonic. Excluding the use of conventional spatially sinusoidal eigenfunctions, a direct numerical solution of wave equation replaces the initial spatial distribution of standing waves and forms the nonlinear space-averaged terms. Amplification factor is also calculated independently by the time rate of changes of fluctuating variables, and is no longer an explicit function for compulsory representation. Employing only the numerical computation, major assumptions inevitably inherent, and in erroneous manner, in up to date analytical methods could be avoided. With two definitions of amplification factor, 1-D stable wave and 3-D unstable wave are examined, and clearly demonstrated the potentiality of a suggested theoretical-numerical method of combustion instability.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

OBSERVATIONS ON A FURTHER IMPROVED ($\frac{G}{G}$) - EXPANSION METHOD AND THE EXTENDED TANH-METHOD FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.253-264
    • /
    • 2012
  • In the present article, we construct the exact traveling wave solutions of nonlinear PDEs in the mathematical physics via the (1+1)-dimensional Boussinesq equation by using the following two methods: (i) A further improved ($\frac{G}{G}$) - expansion method, where $G=G({\xi})$ satisfies the auxiliary ordinary differential equation $[G^{\prime}({\xi})]^2=aG^2({\xi})+bG^4({\xi})+cG^6({\xi})$, where ${\xi}=x-Vt$ while $a$, $b$, $c$ and $V$ are constants. (ii) The well known extended tanh-function method. We show that some of the exact solutions obtained by these two methods are equivalent. Note that the first method (i) has not been used by anyone before which gives more exact solutions than the second method (ii).

Shoaling and Breaking Characteristics of Fully Nonlinear Boussinesq Model (완전비선형 Boussinesq 모형의 천수 및 쇄파 특성)

  • YOON JONG-TAE;PARK SEUNG-MIN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.29-33
    • /
    • 2005
  • The accuracy of predicting wave transformation in the nearshore is very important to wave hydrodynamics, sediment transport, and design of coastal structures. Numerical experiments are conducted to identify the shoaling and breaking characteristics of a fully nonlinear Boussinesq equation-based model. Simulated shoaling showed good agreement with the Shouto's formula, and the results of the breaking experiment agreed well with experimented data, over several beach profile.