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GENERAL DECAY OF SOLUTIONS FOR VISCOELASTIC

EQUATION WITH NONLINEAR SOURCE TERMS

Kiyeon Shin and Sujin Kang

Abstract. A viscoelastic wave equation in canonical form weakly non-

linear time dependent dissipation and source terms is investigated in this

paper. And we establish a general decay result which is not necessarily of
exponential or polynomial type.

1. Introduction

Recently, the authors have studied the general decay of solutions of the fol-
lowing problem.[10]

utt −∆u+

∫ t

0

g(t− τ)∆u dτ + a(x)ut = |u|pu, x ∈ Ω, t ≥ 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

Many different forms of viscoelastic wave equations have been considered
with various methods by many authors. For related works, we refer the readers
[1], [3], [5], [6] and [12]

On the other hand, Cavalcanti et el.[2] have been considered the following
problem ;

|ut|ρutt −∆u−∆utt +

∫ t

0

g(t− τ)∆u dτ − γ∆ut = 0, x ∈ Ω, t ≥ 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

The equation (1) is considered as the absence of the dispersion term |ut|ρ
is missing in some manner. A global existence result for γ ≥ 0 as well as an
exponential decay for γ > 0 has been established. These results have been
extended by Messaoudi and Tatar [7] to a situation where a source term is
competing with the dissipation terms induced by both the viscoelasticity and the
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viscosity. In [7]. the authors combined well known methods with perturbation
techniques to show that solution having positive and small initial energy exists
globally and decays to the rest state exponentially.

With the above results, we consider the following problem in this paper ;

|ut|ρutt −∆u−∆utt +

∫ t

0

g(t− τ)∆u dτ + a(x)ut = b|u|pu, x ∈ Ω, t ≥ 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where ρ, b > 0, a(x) = 1 and p > 0 is a constant. And, g is positive function
satisfying some conditions to be satisfied later and Ω is bounded domain of Rn
(n ≥ 1) with a smooth boundary ∂Ω. This type of problems usually appear as
a model in nonlinear viscoelasticity (refer [2], [8]).

Recently, Messaoudi and Tatar [8] studied the problem (3) with a(x) = 0, in
which the source term competes with only the viscoelastic dissipation induced
by the memory term. They showed that there exists an appropriate set S (called
a stable set) such that if the initial datum is in S then the solution continues
to live there forever. They also showed that the solution goes to zero with an
exponential or polynomial rate of the relaxation function g.

In the present paper we are concerned with problem (3) with a(x) = 1, in
which both the weakly nonlinear time-dependent dissipation and source terms
are contained. Also, our intention is to show that, for a certain class of relaxation
functions and certain initial data in the stable set, the solution energy decays
at a similar rate of decay of the relaxation function g, which is not necessarily
decaying in a polynomial or exponential fashion.

This paper is organized as follows. In section 2, we present some notations
and material needed for our work and section 3 contains the statement and the
proof of our main result.

2. Preliminaries

In this section, we present some materials needed in the proof of our main
results. Also, for the sake of completeness we state, without a proof, the global
existence result of Messaoudi and Tatar [8].

For the relaxation function g, we assume the followings ;

(H1) g : R+ → R+ is C1–function satisfying 1−
∫∞

0
g(s)ds = l > 0

(H2) There exists a positive differentiable function ξ(t) satisfying
i) g′(t) ≤ −ξ(t)g(t) for t ≥ 0,
ii) |ξ′(t)/ξ(t)| ≤ k, ξ(t) > 0, and ξ′(t) ≤ 0 for t > 0.

(H3) For the nonlinear term, we assume

i) p > 0, for n = 1, 2 and 0 < p ≤ 2(n−1)
n−2 , for n ≥ 3.

ii) ρ > 0, for n = 1, 2 and 0 < ρ ≤ 2
n−2 , for n ≥ 3.
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Remark 1. Since ξ is nonincreasing, ξ(t) ≤ ξ(0) := M

We will use the embeddings H1
0 ↪→ Lp for p ≤ 2n

n−2 (n ≥ 3), p ≥ 2 (n = 1, 2)

and Lq ↪→ Lp (p < q) with the same embedding constant C.

We introduce the modified energy functional

E(t) =
1

ρ+ 2
‖ut‖ρ+2

ρ+2+
1

2
‖∇ut‖22+

1

2
(1−

∫ t

0

g(s)ds)‖∇u(t)‖22+
1

2
(g∗∇u)(t)− b

p
‖u(t)‖pp,

where (g ∗ u)(t) =
∫ t

0
g(t− τ)||u(t)− u(τ)||22dτ .

And, we set I(t) = ‖∇ut‖22 +(1−
∫ t

0
g(s)ds)‖∇u(t)‖22 +(g∗∇u)(t)−b||u(t)||pp.

We also assume the following ;

(H4) E(0) < d1 =
p− 2

2p
(

l

b2/pc2
)

p
p−2 and I(0) > 0.

Proposition 2.1. Suppose (H1)–(H4) hold. If u0, u1 ∈ H1
0 (Ω), then the solu-

tion of (3) is global and bounded in time and satisfies l‖∇u(t)‖22 + ‖∇ut(t)‖22 ≤
2p
p−2E(0).

Proof. See [9] and [11]. �

Lemma 2.2. If u is the solution of (3), then the energy functional E satisfies

E′(t) =
1

2
(g′ ∗ ∇u)(t)− 1

2
g(t)||∇u(t)||22 − ||ut||22 ≤

1

2
(g′ ∗ ∇u)(t) ≤ 0,

for almost every t ∈ [0, T ].

Proof. Multiplying (3) with ut and integrating over Ω, we get

d

dt

{
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2
‖∇u‖22 +

1

2
‖∇ut‖22

}
−
∫ t

0

g(t− τ)

∫
Ω

∇u(τ)∇ut(t)dxdτ + ‖ut‖22 −
b

p

d

dt
‖u‖pp = 0. (4)

For the second term on the left side of (4), we obtain∫ t

0

g(t− τ)

∫
Ω

∇u(τ)∇ut(t)dxdτ

= −1

2

d

dt

[ ∫ t

0

g(t− τ)

∫
Ω

|∇u(τ)−∇u(t)|2dxdτ
]

+
1

2

d

dt

[ ∫ t

0

g(τ)

∫
Ω

|∇u(t)|2dxdτ
]

(5)

+
1

2

∫ t

0

g′(t− τ)

∫
Ω

|∇u(τ)−∇u(t)|2dxdτ − 1

2
g(t)

∫
Ω

|∇u(t)|2dxdτ
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By inserting (5) into (4), we get

E′(t) =
1

2
(g′ ∗ ∇u)(t)− 1

2
g(t)‖∇u(t)‖22 − ‖ut‖22 ≤

1

2
(g′ ∗ ∇u)(t) ≤ 0.

�

3. Decay of solutions

In this section, we state and prove main result. For this purpose, we set
L(t) = NE(t) + εψ(t) + χ(t), where ε and N are positive constants and

ψ(t) =
1

ρ+ 1
ξ(t)

∫
Ω

|ut|ρutudx+ ξ(t)

∫
Ω

∇ut∇udx,

χ(t) = ξ(t)

∫
Ω

(∆ut −
|ut|ρut
ρ+ 1

)

∫ t

0

g(t− τ)(u(t)− u(τ))dτdx.

Lemma 3.1. Let u ∈ L∞(0, T ;H1
0 (Ω)) be a solution of (3), we have∫

Ω

(

∫ t

0

g(t− τ)(u(t)− u(τ))dτ)ρ+2dx ≤ (1− l)ρ+2Cρ+2(
4pE(0)

(p− 2)l
)ρ/2(g ∗ ∇u)(t).

Proof. By the Holder’s inequality and Poincaré’s constant C, we get the result.
�

Lemma 3.2. Suppose that u is a solution of (3), we have α1L(t) ≤ E(t) ≤
α2L(t) for two positive constants α1 and α2.

Proof. By Lemma 3.1, (H1) and Remark 1, we obtain the result. [4] �

By the above Lemma, we note that L(t) and E(t) have very close relation.
Since L(t) = NE(t)+εψ(t)+χ(t), we are interested in the play of two functions
ψ(t) and χ(t). The next two Lemmas are concerned about these functions.

Lemma 3.3. Suppose (H1)–(H4) and u0, u1 ∈ H1
0 (Ω) hold. If u is a solution

of (3), then ψ(t) satisfies

ψ′(t) ≤ −ξ(t)[ l
2
− α(k +

kC

ρ+ 1
+ C)]||∇u||22

+
(1− l)ξ(t)

2l
(g ∗ ∇u)(t) +

ξ(t)

ρ+ 1
||ut||ρ+2

ρ+2

+
{

1 +
C

4α
+

k

4α
[1 +

C2(ρ+1)

ρ+ 1
(

2pE(0)

(p− 2)l
)ρ]
}
ξ(t)||∇ut||22

+bξ(t)||u||pp.

Proof. We recall that ψ(t) =
1

ρ+ 1
ξ(t)

∫
Ω

|ut|ρutudx+ ξ(t)

∫
Ω

∇ut∇udx.

By multiplying (3) with u and integrating over Ω, we obtain
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∫
Ω

|ut|ρuttudx+

∫
Ω

|∇u||∇utt|dx

= −||∇u||22 + b||u||pp −
∫

Ω

utudx+

∫
Ω

∇u(t)

∫ t

0

g(t− τ)∇u(τ)dτdx.

By (H1)–(H3) and Young’s inequality,

ψ′(t) =
ξ(t)

ρ+ 1
||ut||ρ+2

ρ+2 + ξ(t)||∇ut||22 +
ξ′(t)

ρ+ 1

∫
Ω

|ut|ρutudx

+ξ′(t)

∫
Ω

∇ut∇udx− ξ(t)
∫

Ω

uutdx− ξ(t)||∇u||22

+ξ(t)

∫
Ω

∇ut
∫ t

0

g(t− τ)∇u(τ)dτdx+ b||u||ρρξ(t)

≤ −ξ(t)
[ l

2
− α(k +

kC

ρ+ 1
+ C)

]
||∇u||22 +

(1− l)ξ(t)
2l

(g ∗ ∇u)(t)

+
ξ(t)

ρ+ 1
||ut||ρ+2

ρ+2

+
{

1 +
C

4α
+

k

4α
[1 +

C2(ρ+1)

ρ+ 1
(

2pE(0)

(p− 2)l
)ρ]
}
ξ(t)||∇ut||22

+bξ(t)||u||pp.

�

Lemma 3.4. Suppose (H1)–(H4) and u0, u1 ∈ H1
0 (Ω) hold. If u is the solution

of (3), then, for δ > 0, χ(t) satisfies

χ′(t) ≤ δξ(t)
[
1 + 2(1− l)2 + bC2p−2(

2(p)E(0)

(p− 2)l
)p−2

] ∫
Ω

|∇u|2dx

+(1− l)
[
2δ +

3

4δ
+
bC2

4δ
+

bC2

4δ(ρ+ 1)

]
ξ(t)(g ∗ ∇u)(t)

−g(0)

4δ
(1 +

C2

ρ+ 1
)ξ(t)(g′ ∗ ∇u)(t)

− ξ(t)

ρ+ 1
(

∫ t

0

g(s)ds)||ut||ρ+2
ρ+2

+{δ(k + 1)[1 + C2 +
C2(ρ+1)

ρ+ 1
(
2(p)E(0)

(p− 2)l
)ρ]

−
∫ t

0

g(s)ds}ξ(t)||∇ut||22.

Proof. Since χ(t) = ξ(t)

∫
Ω

(∆ut −
|ut|ρut
ρ+ 1

)

∫ t

0

g(t− τ)(u(t)− u(τ))dτdx,
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χ′(t) = ξ(t)

∫
Ω

∇u(t)(

∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ)dx

−ξ(t)
∫

Ω

∫ t

0

g(t− τ)∇u(τ)dτ

∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτdx

−ξ(t)
∫ t

0

g(s)ds||∇ut||22 − ξ(t)
∫

Ω

∇ut
∫ t

0

g′(t− τ)(u(t)− u(τ))dτdx

− ξ(t)

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− τ)(u(t)− u(τ)dτ)dx

− ξ(t)

ρ+ 1
||ut||ρ+2

ρ+2

∫ t

0

g(s)ds

−bξ(t)
∫

Ω

|u|p−2u

∫ t

0

g(t− τ)(u(t)− u(τ))dτdx

−ξ′(t)
∫

Ω

∇ut
∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτdx

− ξ′(t)

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g(t− τ)(u(t)− u(τ))dτdx

+ξ(t)

∫
Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ))dτdx. (6)

The first term of (6) gives∫
Ω

∇u(t)

∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτdx ≤ δ
∫

Ω

|∇u(t)|2dx+
1− l
4δ

(g ∗ ∇u)(t).

The second term of (6) gives∫
Ω

∫ t

0

g(t− τ)∇u(τ)dτ

∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτdx

≤ 2δ(1− l)2

∫
Ω

|∇u(t)|2dx+ (2δ +
1

4δ
)(1− l)(g ∗ ∇u)(t).

The third term of (6) gives∫
Ω

∇ut(
∫ t

0

g′(t− τ)(u(t)− u(τ))dτ)dx ≤ δ
∫

Ω

|ut|2dx−
g(0)

4δ
(g′ ∗ ∇u)(t).

The fourth term of (6) gives

1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− τ)(u(t)− u(τ)dτ)dx

≤ δC2ρ+2

ρ+ 1
(

2p

(p− 2)l
E(0))ρ

∫
Ω

|∇ut|2dx+
g(0)C2

4δ(ρ+ 1)
(−g′ ∗ ∇u)(t).
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The sixth term of (6) gives

−b
∫

Ω

|u|p−2u

∫ t

0

g(t− τ)(u(t)− u(τ))dτdx

≤ bδC2p−2(
2p

(p− 2)l
E(0))p−2

∫
Ω

|∇u(t)|2dx

+
b(1− l)C2

4δ
(g ∗ ∇u)(t).

The seventh term of (6) gives

∫
Ω

∇ut
∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτdx

≤ δ
∫

Ω

|∇ut|2dx+
1− l
4δ

(g ∗ ∇u)(t).

The eighth term of (6) gives

1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g(t− τ)(u(t)− u(τ))dτdx

≤ δC2ρ+2

ρ+ 1
(

2p

(p− 2)l
E(0))ρ

∫
Ω

|∇ut|2dx+
(1− l)C2

4δ(ρ+ 1)
(g ∗ ∇u)(t).

The ninth term of (6) gives

∫
Ω

ut

∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτdx

≤ δC2

∫
Ω

|∇ut|2dx+
1− l
4δ

(g ∗ ∇u)(t).

By adding all the 10 terms, we have the result. �

Theorem 3.5. Suppose (H1)–(H4) and u0, u1 ∈ H1
0 (Ω) hold. If u is the so-

lution of (3), then for each t0 > 0 there exist positive constants K and λ such

that the solution of (3) satisfies E(t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

, t ≥ t0.

Proof. First of all, since g is positive and continuous with g(0) > 0,

∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0, t ≥ t0. (7)
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We recall that L(t) = NE(t) + εψ(t) + χ(t). By Proposition 2.2, Lemma 3.3
and Lemma 3.4,

L′(t) ≤ −
[
{g0 − ε(1 +

C

4α
+

k

4α
(1 +

C2(ρ+1)

ρ+ 1
(

2pE(0)

(p− 2)l
)ρ))}

−(k + 1)δ{1 + C2 +
C2(ρ+1)

ρ+ 1
(

2pE(0)

(p− 2)l
)ρ)}

]
ξ(t)||∇ut||2

−{ε[ l
2
− α(k +

kC2

ρ+ 1
+ C2)]− δ

[
1 + 2(1− l)2

+bC2p−2(
2pE(0)

(p− 2)l
)p−2)

]
}ξ(t)||∇u||22

+{ ε
2l

+
3 + 8δ2 + bC2

4δ
+

bC2

4δ(ρ+ 1)
}(1− l)ξ(t)(g ∗ ∇u)(t)

+{N
2
− g(0)

4δ
(1 +

C2

ρ+ 1
)M}(g′ ∗ ∇u)(t)

−(g0 − ε)
ξ(t)

ρ+ 1
||ut||ρ+2

ρ+2 + εbξ(t)||u||pp. (8)

At this point, we choose α > 0 so small that
l

2
− α(k +

kC2

ρ+ 1
+ C2) >

l

4
. For

a fixed α, we choose ε > 0 sufficiently small enough that

ε < g0

/[
2(1 +

C

4α
+

k

4α
(1 +

C2(ρ+1)

ρ+ 1
(

2pE(0)

(p− 2)l
)ρ))

]
. Once α and ε are fixed,

we choose a positive constant δ satisfying δ < min{δ1, δ2} where

δ1 =
g0

2(k + 1)[1 + C2 + C2(ρ+1)

ρ+1 ( 2pE(0)
(p−2)l )

ρ)
,

δ2 =
εl

4[1 + 2(1− l)2 + bC2p−2( 2pE(0)
(p−2)l )

p−2)]
.

Now, we pick N sufficiently large using the above δ and ε that

{N
2
− g(0)

4δ
(1 +

C2

ρ+ 1
)M} − {3 + 8δ2 + bC2

4δ
+

bC2

4δ(ρ+ 1)
}(1− l) > 0.

Then, by (8) and Lemma 3.2, we have

L′(t) ≤ −βξ(t)L(t), ∀t ≥ t0, β > 0.

Integrating the above inequality, by Lemma 3.2, we get the desired main result,

E(t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

.

�
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