• Title/Summary/Keyword: nonlinear uncertain system

Search Result 248, Processing Time 0.028 seconds

A Robust Control with a Neural Network Structure for Uncertain Robot Manipulator

  • Han, Myoung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1916-1922
    • /
    • 2004
  • A robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, and etc. Therefore, uncertainties are often nonlinear and time-varying. The neural network structure presents the bound function and does not need the concave property of the bound function. The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulator.

Robust Predictive Control of Uncertain Nonlinear System With Constrained Input

  • Son, Won-Kee;Park, Jin-Young;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.289-295
    • /
    • 2002
  • In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC) with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI. To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible single link manipulator are performed.

포수 조준경 안정화 장치의 슬라이딩 모드 적응 제어기 설계 (Sliding Mode Adaptive Control of the Gunner's Primary Stabilized Head Mirror)

  • 계중읍;성기종;이원구;이만형
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.109-117
    • /
    • 1999
  • In this paper, a direct adaptive control, based on Lyapunov Function Candidate, is applied to a nonlinear Gunner's Primary Stabilized Head Mirror system to derive a parameter adaptation scheme; furthemore, a nonlinear sliding mode control, but also compensating the error in identification of the parameters which are even varying of have uncertain values. The performance of the adaptive controller is determined by the tracking ability to a desired model under some disturbances and the slowly varying parameters of the system. Both adaptive scheme and sliding mode play an important fole in the improvement of the nonlinear system control.

  • PDF

선형화 오차에 강인한 확장칼만필터 (An Extended Kalman Filter Robust to Linearization Error)

  • 혼형수;이장규;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

외란 관측기를 이용한 비선형 시스템의 강인 적응제어 (Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer)

  • 황영호;한병조;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

불확실한 비선형 시스템에 대한 강인 유한 시간 안정화 (Robust Finite-Time Stabilization for an Uncertain Nonlinear System)

  • 서상보;심형보;서진헌
    • 전자공학회논문지SC
    • /
    • 제46권2호
    • /
    • pp.7-14
    • /
    • 2009
  • 본 논문에서는 불확실성을 가지는 비선형 시스템에 대한 강인 유한 시간 안정화 문제를 고려한다. 불확실성은 시변 외란 혹은 이미 알고 있는 옹골 집합에 포함된 파라미터들이다. 제안된 설계기법은 역진기법(backstepping)과 추가된 다이나믹스를 이용한 다이나믹 지수 보정법(dynamic exponent scaling)에 기반을 두고 있으며, 이로부터 다이나믹 스무스 궤환 제어기(dynamic smooth feedback controller)가 유도된다. 페루프 시스템의 유한 시간 안정과 제어기의 유한함은 각각 유한 시간 안정에 관한 리아푸노프 안정 이론과 새로운 개념인 '차수 지표자(degree indicator)'를 이용하여 증명된다.

비선형 적응제어를 이용한 전력계통 안정화 (Power system stabilization via adaptive feedback linearization)

  • 윤태웅;이도관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1221-1224
    • /
    • 1996
  • As in most industrial processes, the dynamic characteristics of an electric power system are subject to changes. Amongst those effects which cause the system to be uncertain, faults on transmission lines are considered. For the stabilization of the power system, we present an indirect adaptive control method, which is capable of tracking a sudden change in the effective reactance of a transmission line. As the plant dynamics are nonlinear, an input-output feedback linearization method is combined with an identification algorithm which estimates the effect of a fault.

  • PDF

유계상수 추정과 동적인 퍼지 규칙 삽입을 이용한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계 (Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System Using Estimation of Bounding Constans and Dynamic Fuzzy Rule Insertion)

  • 박장현;박귀태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.14-21
    • /
    • 2001
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. In indirect adaptive fuzzy control, based on the proved approximation capability of fuzzy systems, they are used to capture the unknown nonlinearities of the plant. Until now, most of the papers in the field of controller design for nonlinear system considers the affine system using fuzzy systems which have fixed grid-rule structure. We proposes a dynamic fuzzy rule insertion scheme where fuzzy rule-base grows as time goes on. With this method, the dynamic order of the controller reduces dramatically and an appropriate number of fuzzy rules are found on-line. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed-loop system is guaranteed.

  • PDF

Sliding Mode Control of 5-link Biped Robot Using Wavelet Neural Network

  • Kim, Chul-Ha;Yu, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2279-2284
    • /
    • 2005
  • Generally, biped walking is difficult to control because it is a nonlinear system with various uncertainties. In this paper, we design a robust control system based on sliding-mode control (SMC) of 5-link biped robot using the wavelet neural network(WNN), in order to improve the efficiency of position tracking performance of biped locomotion. In our control system, the WNN is utilized to estimate uncertain and nonlinear system parameters, where the weights of WNN are trained by adaptive laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified by computer simulations.

  • PDF

CDM 방법을 사용한 선형시스템의 신뢰성 있는 소음제어기 설계 (Design of A Noise Controller for A Linear system using the CDM)

  • 김정환;정태진;이상철;정양웅;정찬수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.455-457
    • /
    • 1998
  • This paper designs a noise controller for the small cavity using Coefficient Diagram Method(CDM). In the small cavity system, there exist nonlinear characteristics such as uncertain-time delay and parameter variation. In the controller design of nonlinear system with uncertainty need to the higher order controller or complexity computation. The coefficient diagram is convenient implementation of the control system design method, that is utilized as a vehicle to collectively express the important features of the system and an improved version Kessler's standard form and the Lipatov stability condition of a constitutes the theoretical basis. Simultaneously, it is provided a desired specification, such as the robustness, the stability, faster response, and lower order controller. A simulation of the system with the proposed controller shows sufficient noise cancelation in small cavity.

  • PDF