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Robust Predictive Control of Uncertain Nonlinear System With

Constrained Input

Won Kee Son, Jin Young Choi, and Oh Kyu Kwon

Abstract: In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC)
with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures
consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual
input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI.

To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible

single link manipulator are performed.
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I. Introduction

Recently, the differential geometric control methods have led
to a new class of control technique for nonlinear systems which
are affine in the control inputs[1]-{7]. Also, this method has
proved to be a very effective for transforming a nonlinear sys-
tem into linear one without using standard Jacobian lineariza-
tion. Basically, feedback linearization(FL) scheme uses nonlin-
ear feedback to cancel out any nonlinearity in the input-output
relation of system. In addition, once a nonlinear system is lin-
earized by feedback, then all of linear control methods can be
directly applied to the new linearized system. However, one
of major disadvantages of FL is a lack of uncertainty handling
ability. Uncertainties can lead to performance deterioration as
well as instability of system, if not properly accounted for in the
control design procedure. Therefore, to overcome this problem,
it is important to design a robust controller taking the uncer-
tainty into consideration for the efficient control system design
and performance improvement. In this paper for the bounded
nonlinear state-dependent uncertain terms, a system description
that the nonlinear system with parameter uncertainties is trans-
formed into polytopic systems by nonlinear feedback, is pre-
sented.

Also, most of physical systems have limitations to the ampli-
tude that can be made to the manipulated variables. Therefore,
a control algorithm should be designed to have the ability to
account for such limitations. To fulfill overall operational re-
quirements, it is necessary to explicitly consider all constraints
in the formulation of the control cost function. In this paper,
to preserve the linearity established by FL, a constraint map-
ping method[8], [9] is presented to deal with nonlinear state-
dependent constraint transformed by FL and, an LMI-based
method[10] is also proposed to handle these input constraints
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in the controller design procedure. To take account of such con-
straints, the IHRMPC (Infinite Horizon Robust Model Predic-
tive Control){11] is adopted as a control technique. From these
results, the MPC problem of minimizing an upper bound on
robust performance objective function over the infinite horizon
which is subject to constraint on the input of linearized system,
is reduced to a convex LMI-based optimization problem. The
configuration of overall closed loop system for control law with
feedback linearization is shown in Fig. 1.

The layout of the paper is as follows: In section II, the de-
scription procedure that a uncertain nonlinear system is trans-
formed into polytopic systems is given. In section III, the LMI-
based model predictive control law for the constrained uncer-
tain nonlinear system is presented. Also, the constraint mapping
method transforming original input constraint into feedback lin-
earized input constraint is given. To exemplify the performance
of the control scheme some simulations with application to flex-
ible single link manipulator are performed in section IV. Finally,
conclusions are summarized in section V.

II. Polytopic systems via FL

Consider a single-input single-output(SISO) nonlinear sys-
tem with parameter uncertainty as follows.

z = f(z,0) + g(z, Nu,
= folz) + go(x)u + Af(z,0) + Ag(z, )u, D
y = h(z),

where z € R" is the states, u € R the input, y € R the
output, # is a uncertain parameter vector in a compact set, and
fo(+), go() represent the nominal parts of uncertain nonlinear
system, and Af(-,0), Ag(.,8) represent the uncertain terms.
For all 8, it is assumed that fo(-), go(-), Af(:,8) and Ag(-, 8)
are smooth vectors and h(x) is a smooth function. The follow-
ing lemma 2 and 3 show that the uncertain nonlinear system(1)
can be linearized by the nominal feedback law and co-ordinate
transformation based on nominal parameters(@ = @p), and its
configuration is shown in Fig. 2.
Lemma 1: Consider the system (1). Assume that
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Fig. 1. Configuration of LMI-based RMPC using FL.

1. the nominal part of the system (1) is fully feedback lineariz-
able, i.e., the relative degree r = n.
2. the uncertain term Ag(-, 8) satisfies that

LagLi h(-)=0for1 <i<n-—2. )

Then, by the nominal input-output linearization, the uncertain
nonlinear system (1) is transformed as follows:

21 =22+ A&l(m, 0)
©)
A&(z,8) + (1 + AB(z, 0))v.

Zn
Proof : Firstly, by differentiating the nominal co-ordinate
transformation
h(z)

L, h(z)

z=Ts(z,00) = ; )

L;Lo_l h{z)
and by assumptions of lemma I, the system(1) can be written as

Zizzi_',l-f—A&i(:U,e), 1 SZSTL—]'?

_ _ 5
5(3) + By + Adn(2,0) + AB(a, 0w,

1l

Zn

where
d(I) = L"floh(x)a B(I) = LQOL?O_lh’(x)a

Aai(z,0) = LagLy ' h(z), (5.0)

AB(z,0) = Lag L}, "h(z).
Secondly, by choosing the nominal feedback law as below to
cancel the nominal nonlinearity in (5)

—a(z) +v

= — 6
R TS ©

[A;\' Bxa CN] Polytopic system [A; B, C]

Uncertain NL System
{z’ = A(O)z+ B(Ow

Fig. 2. Polytopic models.

we have
2i22i+1+A@i($,0), 1<1<n~1, o
Zn = Ad(z,0) + (1 + AB(z, 0))v,
where
A&(z,0) = Adn(z,0) — Aﬁ(x,e)%“‘;
x
_ (7.a)
P Aﬂ(xve)
AB(z,0) = =22

Hence, by (4) and (6) the uncertain nonlinear system (1) is trans-
formed to feedback linearized system(7) with uncertain terms.

However, we can observe that the feedback linearized system
of (7) is still nonlinear. The uncertain terms Aa; (-, 8), Aéa(-, 6)
and AB(-, 8) are nonlinear functions of the states z and uncer-
tain parameter 6. For the use of linear robust control techniques
these nonlinearities have to be linearized. Furthermore, these
uncertain terms occur at levels of differentiation different from
that of the control input v, i.e., these uncertain terms do not
satisfy the matching condition. Therefore, as shown in lemma
2, we overcome these restrictive conditions by characterizing
the uncertainties in a suitable form to design linear robust con-
troller.

Lemma 2 : Consider the system (3). If the uncertain terms
satisty

Ad;(z,0) = Mi(z,0)z, 1 <i<n-—1,
AG(2,0) = Ma(z,6)2, ®)
|AB(z, 6)| < 1655,

where M;(z, 0), M,(x,8) are row vectors with bounded ele-
ments and are affine in 8, and 55 is a constant value, then the
transformed system (3) by feedback can be reduced to polytopic
systems in the form as follows:

2= A(0)e + B()v. ©)

Proof : Using (3) and (8), (9) is easily obtained. B

If the uncertain parameter vector 6 is defined as polytope
given by

N N
fe Co{t't = b, >0, > ai=1 (10
i=1

i=1

where 8° denotes vertex vectors of 8, Co denotes convex hull,
and N = 2”, k is the number of uncertain parameters, then, the
linearized polytopic systems (9) can be represented as a convex
combination of the vertices of system matrices. From assump-
tion of Lemma 2, A(8), B(6) is affine in §. Hence,

N
A(f) € Z aiA(Gi) =mAi+- - +anvAn
i=1

= CO{Aly“‘,AN} (11)

N
B() € ZOéiB(ﬁi) =oB1+ -4+ anBn

i=1

= Co{B, - ,Bny}
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As a resuit of the nominal co-ordinate, input transformation and
the characterization of uncertainties, we can obtain convex com-
binations of the linearized polytopic system for A(6), B(6) as
follows:

[A(0) B(6)] € Q. = Co{[A1 Bi],--- ,[A~x Bw]}. (12)

Since the control law involves the discretization for discrete
controller design, the continuous-time vertex models of (12)
need to be expressed in discrete-time. By selecting an appro-
priate sampling interval that maintains feedback linearizability
in the discrete-time domain, (12) can be discretized usiné a Eu-
ler method. The discretized polytopic models of (12) is given
as follows:

z(k+ 1) = Aa(0)z + Bg(0)v, (13)

where

[Ad(O) Bd(g)] S Qd = CO{[Adyl Bd,l], ey [Ad,N Bd,N]}-

The input and co-ordinate transformation is performed at each
sampling time using the discrete controller and current sampled
states. Based on the vertex systems in (13), it is possible to
synthesize linear robust controller to realize performance spec-
ifications such as stabilization.

I11. Robust predictive control law
1. Unconstrained case
Consider the discretized polytopic systems via feedback lin-
earization as follows:

z(k+ 1) = Ag:2(k) + Bag,v(k),
y = Cqz(k), (14)
[Ad,; Bai] € Qa, >0,
The MPC problem in this paper is to obtain state feedback con-
troller K which minimizes, at each sampling time k, a robust

performance objective over infinite prediction horizon as fol-
lows:

max Joo (), (15)

min a
v(k+ilk),i=0,1,..,m [Aq; Bq ;]€Q4,i>0

with

Too(k) = 3 (20 +ilB)T Quz(k + ilk) + w(k + ilk)T Ru(k + ilk)

i=0
where Q. > 0, R > 0 are symmetric weighting matrix and
factor, m is control horizon, z(k + i|k) is state at time k + 4,
predicted based on the measurements at time k, and v(k + i|k)
is control input at time k +¢ computed by optimization problem
(15) at time k, respectively. Above min-max problem(15) can
be solved in the following two steps: Firstly, an upper bound
on the robust performance objective is derived, and then min-
imize this upper bound with a constant state feedback control
law v(k + ilk) = Krz(k + ilk),7 > 0. It is assumed that ex-
act measurement of the state of the system is available at each
sampling time k, i.e. z(k|k) = z(k).

Consider a quadratic function V(z) = 27 Pz, P > 0 of the
state z(k|k) = z(k) of the system (14) with V(0) = 0. From
the result of [11], we obtain

=V (z(k[k)) £ —Joo (k).

Thus,

[Aa,i Ba, rgifoleﬁd,iZO Too (k) < V(= (klE)): (16)
This gives an upper bound on the performance objective(for de-
tails, see [11]). From (16), the control problem in (15) is equiv-
alent to

v(k+iik§21:r{),l,m,m V{(z(klk)). an
Thus, the goal of robust predictive control law via feedback lin-
earization is redefined to synthesize, at each time step &, a con-
stant state-feedback control law v(k + i|k) = Krz(k + i|k)
to minimize this upper bound V' (z(k|k)). As is standard in
MPC, only first computed control v(k|k) = Kiz(k|k) is im-
plemented. At the next sampling time the state z(k + 1) is
measured or calculated, and the optimization is repeated to re-
compute K. Conditions for existence of state feedback gain
K in minimization problem(17), are derived from the follow-
ing theorem.

Theorem : 1 ([11]) Let z(k) = =z(klk) be the state of the
uncertain system (14) measured at sampling time k. Suppose
the uncertainty set §24 is defined by a polytopic system as in
(14). Then, the state feedback matrix K in the control law
v(k +ilk) = Krz(k +4k), ¢ > 0 which minimizes the upper
bound V' (z(k|k)) on the robust performance objective function
at sampling time k is given by

Ke=YQ™', (18)

where @@ > 0 and Y are obtained from the solution to the fol-
lowing linear objective minimization problem:

i 19
Jain 7y (19
subject to
1 2(klk)T
>0 (20)
z(k|k) Q
andfori=1,... N
Q QAT +YTBT, Q@ YTR?
AgiQ+ By Y Q 0 0 -0
V20 0 NI 0 ="
RY/2y 0 0 1

2. Constrained case
Consider the system (1) with hard constraint on original input

Uy < U < Unb, (22)

where wp, Uy are lower and upper bound, respectively. Then,
we can define a new control variable v as an input of lin-
earized system. Introducing the nominal co-ordinate and input
transformation and discretizing the continuous-time polytopic
system(9), we can define a new discrete linearized system as
(14). Note that (14) holds the linear properties only if the con-
straint condition on its input for 0 < 7 < m is satisfied

vis(k + jlk) < vlk + jlk) < vu(k + k), (23)

@n
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where v(k + j|k) is the value of the input v(k + 7) computed at
time step k, v, (k + 7]k) and vue(k + jk) are the constraints
computed at time step k, respectively. The new input v is related
to the actual control input u through a mapping of nonlinear
scalar functions &(x), B(z), as given by (6). It is clear that, due
to the feedback linearization, original hard constraint (up, Uyb)
are mapped into the MPC constraint (vis(-), vus(+)) on v which
is in general nonlinear and state dependent. The input constraint
mapping is performed using the feedback linearization law(24)
and the current state measurement x(k). This mapping can be
written as follows:

v(k) = a(z(k)) + B(z(k))ulk). (24)

For 0 < j < m, the transformed constraints at time step k are
determined by solving the following optimization problem

vk + jlk) = u(ﬂink) v(k + jk)

Jl

(k k k k @
vus(k + jlk) = max wv(k+J
o+ 5lk) = masx ik + 5[k)
subject to original hard constraints
u < u(k + jlk) < uus. (26)

Because exact mapping of future input constraints is impracti-
cal, it is necessary to approximate the constraints vy, (k + jlk)
and vy, (k + j|k) for j > 1. The predicted values of the trans-
formed state variable is obtained.

2(k+jlk)=Aq:i2(k+j—1|k)+Bav(k+5—1]k—1) ”

2(klk) = z(k). @n
The state sequences and the inverse transformation T, * (2) are
used to compute future values of the state vector. The solu-
tion of optimization problem in (25) yields the transformed con-
straints. These variable constraints are used in the linear MPC
design. The procedure is repeated at the next time step with
the input sequences and the measurement xz(k + 1). Next, we
show how constraint on input can be incorporated into control
algorithm as sufficient LMI constraints. The basic idea of this
problem can be found in Boyd et al.[10]. Let S define the ellip-
soid as follows:

S={ecRETQ e <1} (28)

If there exists () such that (21) holds, and z(k|k) € S, then the
predicted states z{k + j|k) of uncertain system belong to S for
all 5 [10], [t1]. Thus, S is an invariant ellipsoid for the pre-
dicted states z(k + j|k). At time step k, consider the Euclidean
norm constraint on input

lv(k + 5l < w(k), 5 =0. (29)

The constraints v (k) are computed as follows, at time step k,
by solving the optimization problem in (25)

'Ub(k) = min(]vlb(k —|—]|k‘)|, |’Uub(k +]“€)|) (30)

The constraint v, (k) is imposed on the present and the entire
horizon of future manipulated variables, although only the first

control move v(k|k) = v(k) is implemented. From [10], we
have

max Ju(k + jlk)| = max | (YQ "z(k + jlk)))|

< max(|(YQ')| 3D
=5(yQ %)
Thus, if
F(YQ %) <wy(k), (32)
or
@Y TYQ %) < vi(k)I, (33)

then |Jv(k + j|k)|| < ve(k), j > 0 forany [Ag; Ba:] € Qa,
1 > 0. Using Schur compliment after dividing both side of (33)
by vZ(k) and multiplying on left and right by Q*/2, we obtain

¥ o]

Y ik =0 (34

Corollary 1: Suppose that the assumption in theorem 1 is
satisfied. Then, the state feedback matrix K, in the control law
v(k +ik) = Krz(k +i|k), ¢ > 0 which minimizes the upper
bound V' (z(k|k)) on the robust performance objective function
and satisfies a specified original input constraint at sampling
time k is given by

Ke=YQ ', (35)

where > 0 and Y are obtained from the solution to the fol-
lowing linear objective minimization problem:

i 36
i (o)

subject to (20), (21) and (34).
IV. Simulations

A flexible single link manipulator system with a parameter
uncertainty and input constraint is considered as a design ex-
ample and its mechanism is given in Fig. 3. Consider the dif-
ferential equation for the flexible single link manipulator with
uncertainty in parameter I given by

& = fo(z) + go(x)u+ Af(z,0) + Ag(z, 0)u,

37
y = h(z),

Fig. 3. Flexible single link manipulator.
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with
. .
folz) = —3(MgLsinz: + k(z1 — z3))
0 Za )
L E(z1 — zs)
T
go(LE) = [ 0 0 O % } ) h({L’) =, (38)
r 0
4 MgLsinz; + k(z1 — x3))
A 0) = 1
7(@.6) . ,
L 0
Ag(z,0) =0,

where x1,x3 are the angles of the link ¢; and motor shaft ¢o,
u is torque applied to the motor shaft, J, I are inertia moments
of the motor and the link, L is distance from the motor shaft
to the center of mass of the link, M is mass of the link, g is
acceleration due to gravity, k is torsional spring constant. The
parameter € is an uncertainty factor used to represent change-
able inertia moment [ of the link. And it is assumed that
—9 < 6§ < 0.4737 corresponding to —90% ~ 90% uncer-
tainty in /. The set parameters are chosen in this simulation as
follows: I = 0.04|Nms?/rad),J = 0.04{Nms?/rad],k =
0.8][Nm/rad), L = 0.1jm), M = 6[kg], g = 9.8]m/s]. And
the input torque v is limited {u| < 20[N'm]. Using the nominal
feedback linearization in (4),(6) for the system in (37), we have

1
— L2
2 =Ts(,0) = —%(MgLsinxl + k(z1 — x3))
—%(Mngg cosz1 + k(zp — x4))
" —agx) —}—v’
B(z)
where
a(z) = ML 52 +k—2( ~z3)
&) = — w2 sinz+ = (o1 —-as
1 .
+ﬁ(]\/[gLcos:cl—l—k)(MgLsma:l—i—k(ml—x3))
= k
B(z) 17

From (5.a) and (7.a), we have
Aai(z,0) =0, Ads(z,0) = —0z3, Aas(z,0) = 0,
Aé&(z,0) = ?(MgL cos z1 + k)zs, (39
AB(x,0) = 0.

As aresult of feedback linearization, the original uncertain non-
linear system is expressed to uncertain polytopic systems as fol-

lows.
21 =129, Z2=(1-0)z
0
23 =24, Z4= Y(Mchoszl + k)zs + v,
or
0 1 0 0 0
g 0 1-8 0 0
= . 0
“lo o 0 I I R
0 0 %MgL+k) O 1
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Fig. 4. The performances of controller based on nominal model.
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Fig. 5. The performances of unconstrained robust controller
based on Theorem 1.

And the polytopic system(40) in continuous-time is discretized
with sampling time 0.01[sec] to design the controller. By (25)
and (30), the hard constraint (s, Uws) On input u is mapped to
constraint v, (k) on input v of linearized system at the time step
k. With Q. = I4x4, R = 0.01, all LMIs-related computations
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Fig. 6. The performances of constrained robust controller based
on Corollary 1.

are performed using LMI control toolbox[12].

The effect of uncertainties on regulation performances for the
case of controller based on only nominal model and for the case
of controller based on polytopic models are shown from Fig. 4
to Fig. 6, respectively. We can see from Fig. 4 that the control
performances are degraded significantly unless the uncertainty
is considered to the system. Fig. 6 shows that the input torque
u satisfies the constraint well on the constrained input. We can
clearly see that if the constraint on input is not considered in the
control law, then the improved performance cannot be obtained.

V. Conclusions

In this paper, based on convex optimization with LMIs (Lin-
ear Matrix Inequalities) and FL. (Feedback Linearization), ro-
bust feedback linearizing predictive control scheme for fully
feedback linearizable nonlinear systems is proposed for regula-
tion problem. The main contribution of this paper is to consider
the problem of control of a nonlinear system with uncertain pa-

rameters and input saturation. First a linearized system with un-
certain terms via Feedback Linearization is characterized and
discretized in uncertain polytopic systems. The constraint map-
ping scheme is also applied to relation between original input
u(-) of nonlinear system and new input v(-) of linearized and
discretized system to preserve the linearity established by Feed-
back Linearization. The stability of controlled system with un-
certain parameter and input constraint is guaranteed by Corol-
lary 1. Finally, the effectiveness and performance of the pro-
posed control scheme are illustrated and analyzed via some sim-
ulation applied to flexible single link manipulator with uncer-
tainty in inertia moment of motor shaft and constraint on input
torque.
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