• Title/Summary/Keyword: nonlinear time series

Search Result 453, Processing Time 0.024 seconds

Annual Precipitation Reconstruction Based on Tree-ring Data at Seorak (설악산 지역의 Tree-ring 자료를 이용한 연 강수량 재생성)

  • Kwak, Jae Won;Han, Heechan;Lee, Minjung;Kim, Hung Soo;Mun, Jangwon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • The purpose of this research is reconstruction of annual precipitation based on Tree-ring series at Seorak mountain and examine its effectiveness. To do so we performed nonlinear time series characteristics test of Tree-ring series and reconstructed annual precipitation of Gangneung from 1687 to 1911 using Artificial neural network and Nonlinear autoregressive exogeneous input (NARX) model which reflects stochastic properties. As a result, Tree-ring series at Seorak Mountain shows nonlinear time series property and reconstructed annual precipitation series drawn from NARX is similar in statistical characteristics of observed annual time series.

Time-Discretization of Time Delayed Non-Affine System via Taylor-Lie Series Using Scaling and Squaring Technique

  • Zhang Yuanliang;Chong Kil-To
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.293-301
    • /
    • 2006
  • A new discretization method for calculating a sampled-data representation of a nonlinear continuous-time system is proposed. The proposed method is based on the well-known Taylor series expansion and zero-order hold (ZOH) assumption. The mathematical structure of the new discretization method is analyzed. On the basis of this structure, a sampled-data representation of a nonlinear system with a time-delayed input is derived. This method is applied to obtain a sampled-data representation of a non-affine nonlinear system, with a constant input time delay. In particular, the effect of the time discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. 'Hybrid' discretization schemes that result from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method parameters to meet CPU time and accuracy requirements are examined as well. The performance of the proposed method is evaluated using a nonlinear system with a time-delayed non-affine input.

Ergodicity of Nonlinear Autoregression with Nonlinear ARCH Innovations

  • Hwang, S.Y.;Basawa, I.V.
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.565-572
    • /
    • 2001
  • This article explores the problem of ergodicity for the nonlinear autoregressive processes with ARCH structure in a very general setting. A sufficient condition for the geometric ergodicity of the model is developed along the lines of Feigin and Tweedie(1985), thereby extending classical results for specific nonlinear time series. The condition suggested is in turn applied to some specific nonlinear time series illustrating that our results extend those in the literature.

  • PDF

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF

A Study on the Prediction of the Nonlinear Chaotic Time Series Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 비선형 혼돈 시계열의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2209-2211
    • /
    • 2004
  • Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.

  • PDF

Nonlinear Behavior in Love Model with Discontinuous External Force

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • This paper proposes nonlinear behavior in a love model for Romeo and Juliet with an external force of discontinuous time. We investigated the periodic motion and chaotic behavior in the love model by using time series and phase portraits with respect to some variable and fixed parameters. The computer simulation results confirmed that the proposed love model with an external force of discontinuous time shows periodic motion and chaotic behavior with respect to parameter variation.

Time Discretization of Nonlinear Systems with Variable Time-Delayed Inputs using a Taylor Series Expansion

  • Choi Hyung-Jo;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.759-769
    • /
    • 2006
  • This paper proposes a new method of discretization for nonlinear systems using a Taylor series expansion and the zero-order hold assumption. The method is applied to sampled-data representations of nonlinear systems with input time delays. The delayed input varies in time and its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling periods. The mathematical expressions of the discretization method are presented and the ability of the algorithm is tested using several examples. A computer simulation is used to demonstrate that the proposed algorithm accurately discretizes nonlinear systems with variable time-delayed inputs.

Dimension Analysis of Chaotic Time Series Using Self Generating Neuro Fuzzy Model

  • Katayama, Ryu;Kuwata, Kaihei;Kajitani, Yuji;Watanabe, Masahide;Nishida, Yukiteru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.857-860
    • /
    • 1993
  • In this paper, we apply the self generating neuro fuzzy model (SGNFM) to the dimension analysis of the chaotic time series. Firstly, we formulate a nonlinear time series identification problem with nonlinear autoregressive (NARMAX) model. Secondly, we propose an identification algorithm using SGNFM. We apply this method to the estimation of embedding dimension for chaotic time series, since the embedding dimension plays an essential role for the identification and the prediction of chaotic time series. In this estimation method, identification problems with gradually increasing embedding dimension are solved, and the identified result is used for computing correlation coefficients between the predicted time series and the observed one. We apply this method to the dimension estimation of a chaotic pulsation in a finger's capillary vessels.

  • PDF

Combination Prediction for Nonlinear Time Series Data with Intervention (개입 분석 모형 예측력의 비교분석)

  • 김덕기;김인규;이성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.293-303
    • /
    • 2003
  • Under the case that we know the period and the reason of external events, we reviewed the method of model identification, parameter estimation and model diagnosis with the former papers that have been studied about the linear time series model with intervention, and compared with nonlinear time series model such as ARCH, GARCH model that it has been used widely in economic models, and also we compared with the combination prediction method that Tong(1990) introduced.

Nonlinear Analog of Autocorrelation Function (자기상관함수의 비선형 유추 해석)

  • Kim, Hyeong-Su;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.731-740
    • /
    • 1999
  • Autocorrelation function is widely used as a tool measuring linear dependence of hydrologic time series. However, it may not be appropriate for choosing decorrelation time or delay time ${\tau}_d$ which is essential in nonlinear dynamics domain and the mutual information have recommended for measuring nonlinear dependence of time series. Furthermore, some researchers have suggested that one should not choose a fixed delay time ${\tau}_d$ but, rather, one should choose an appropriate value for the delay time window ${\tau}_d={\tau}(m-1)$, which is the total time spanned by the components of each embedded point for the analysis of chaotic dynamics. Unfortunately, the delay time window cannot be estimated using the autocorrelation function or the mutual information. Basically, the delay time window is the optimal time for independence of time series and the delay time is the first locally optimal time. In this study, we estimate general dependence of hydrologic time series using the C-C method which can estimate both the delay time and the delay time window and the results may give us whether hydrologic time series depends on its linear or nonlinear characteristics which are very important for modeling and forecasting of underlying system.

  • PDF