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Nonlinear Analog of Autocorrelation Function
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Abstract

Autocorrelation function is widely used as a tool measuring lincar dependence of hydrologic time
series. However, it mav not he appropriate for choosing decorrelation time or delay time 7, which
is essential in nonlincar dynamics domain and the mutual information have recommended for
measuring nonlincar dependence of time series. Furthermore, some researchers have suggested that
one should not choose a fixed delay time 7, but, rather, one should choose an appropriate value for
the delay time window 7, = r(m— 1), which is the total time spanned by the components of each
embedded point for the analysis of chaotic dynamics, Unfortunately, the delay time window cannot
be estimated using the autocorrelation function or the mutual information. Basically, the delay time
window is the optimal time for independence of time series and the delay time is the first locally
optimal time. In this study, we estimate general dependence of hvdrologic time series using the C-C
method which can estimate hoth the delay time and the delay time window and the results may
give us whether hydrologic time series depends on its linear or nonlinear characteristics which are
very important for modeling and forecasting of underlying system.

Keywords: autocorrelation function, correlation integral, delay time, delay time window
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1. INTRODUCTION

Analysis of chaotic time series is common in
many fields of science and engineering, and the
method of delays has become popular  for
attractor reconstruction from scalar time series.
From the attractor dynamics, one can estimate
the correlation dimension and other quantities
to see whether the scalar time series is chaotic
or stochastic. Thercfore, attractor reconstruction
is the first stage in chaolic time scries
analvses. Since the choice of the delay time
reconstruction  using  the

r; for attractor

method of delayvs has not been fully developed,

many researchers  use  the  autocorrelation
function (ACF), which is computationally
convenient and does not require large data

scts. However, it has been pointed out that the
ACF is not appropriate for nonlincar systems,

and, instead, 7, should be chosen as the first

local minimum of the mutual information

(Fraser and Swinney, 1986: Moon et al., 1995).

Unfortunately, this approach is cumbersome

computationally and requires large data sets

(Tsonis, 1992).
According  to

Jackard et al. (1980) and

Takens (1981), the method of delays can be
used to  embed a  scalar  time  series
{x;}, =1, 2,.... into an m-dimensional

space as follows :

—>

-
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s Xje(m~ l)t) >

where £ is the index lag and R is real line.

If the sampling time is z,, the delay time is

r,=tr,. Takens theorem assumes that we
have an infinite noise  free data set, in which
case, we can choose the delay time almost
arbitrarily. However, since real data sets are
finite and noisy, the choice of the delay time

plays an important role in the reconstruction of
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the attractor from the scalar time series. If 7,

is oo small, the reconstructed attractor is

compressed along the identity line, and this is

called redundance. If 7, is too large, the
attractor  dynamics may  become  causally
disconnected, and this is called irrelevance
(Casdagli, 1991). [owever, Wu (1995) found

that the embedding with the delay time which
corresponds to a reconstructed phase diagram

does not nccessarily  lead to  a  good
convergence of the correlation dimension,
The alternative of fixing the delay time

window 7, = r(m—1) can be used for chaotic
time scries analysis, but the estimation of 7,
(1992}

examined the delav time window and compared

is less well developed. Martinerie et al.

it with the delay times estimated using the
ACF  and the

concluded that .

mutual  information.  Thev

could not be estimated by
either of these two methods. Basically, r, is
the optimal time for independence of the data,
methods  estimate the [irst

but these locally

optimal  time,  which  is ty. From this

distinction bhetween 7, and r,.., Kim et al
(1999a) developed a technique using the BDS
1991, 1996) originated

from the correlation integral, which they called

statistic (Brock ot al.,

the C-C method, that can estimate both 1z,

and r7,. Brock et al. (1991, 1996), in their
development of a test for nonlinearity in a time
used  the S(m, N, r) =
Clm,N,v)—C"(1,N,r). C(m, N, r)
is the corrclation integral (see Eq. (2)). Kim et
al.  (1999a) statistic
Stm,N,r,t)=Clm,N,»,t) = C"(1,N,r, t),
and examined its dependence on the index lag

t.

series, statistic

where

used  the  similar

Hyvdrologists  and  environmentalists  have
invoked low dimensional chaos for
understanding  the  nature  of  hydrologic
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variables (Rodriguez-Tturbe et al., 1989 Sharifi
et al., 1990: Wilcox et al, 1991, Sangovomi et
al.,, 1996; Puente and Obregon, 1996: Jeong and
Rao, 1996), wastewater flows (Angelbeck and
Minkara, 1994), and other
(Ghliard  and 1990:  Bormann  and
Kincanon, 1996; Fernandez and Garbrecht, 1996;
Minkara, 1996). Most  of
hvdrologists and environmentalists have been
ACF
Sangoyomi et al. (1996) which used the mutual
of the
time. However, Kim et al. (1998a) showed that,

technical 1ssues

Rosso,

Angelbeck  and

used the except  for the study  of

information for the estimation delay

especially  for  small  data  sets, as  the

embedding  dimension m I8 increased, the

correlation  dimension converges rapidly

held

more

for the case of 1, fixed than for the

case of t,; held fixed.

2. MEASURE OF GENERAL
DEPENDENCE

2.1 Correlation Integral and BDS Statistic

After the attractor has heen  reconstructed
using Eq. (1), quantitative properties of the
chaotic  svstem can be determined.  The
correlation dimension introduced by
Grassherger  and  Procaccia (1983 is widely
used in many fields for the quantitatve
characterization  of  strange  altractors.  The
correlation integral for the cmbedded time
series is the following function:

C(m,N,r t)=

el M CIE S S DY ()

MM~1) -5u /

(2)
= if a<0,
where g%z; :(1)’ i (128‘

N is the size of the data set, M=N—(m— 1)t

is  the number of  embedded points  in

m- dimensional  space, and || |l denotes  the
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sup norm. C{m, N, r,t) measures the fraction
of the pairs of points ,Tf,, 1=1,2,..., M,
whose sup norm separation 18 no greater than
y. If the limit of C(m,N,»,t) as N —oo
exists for cach », we write the fraction of all
state vector points that are within » of each

other as Clm, v, t) = \l’jm)C(m, N, r, t), and the

corrclation dimension is defined as D.(mt)=

Jim [ log Cm, 7, t)/logr]. In practice, N

remains finite, and thus, » cannot go to zero

instead, a lincar region of slope D.(m, t) can
be found in the plot of C(m, N, r», t) vs. log ».
Brock et al. (1991, 1996) BDS

which 1s  based correlation

studied  the

statistic, on the

integral, to test the null hypothesis that the

data are independently and identically

distributed (iid). This test has been particularly

uscful  for chaotic  svstems  and  nonlinear

stochastic systems. Under the iid hvpothesis,

the BDS statistic for s> 1 is defined as

BDS(n, M, ) = S ¢ )= € (LML),
(3
this  converges to a  standard  normal

distribution as M —oo, and ¢° = ¢°(m, M, »)
15 the variance of BDS statistic. Note that the
o°{m,M,r) can be

asymptotic  variance

estimated as
o (m, M, 7)) =

Almim—1)C*" K-CH+K" - C™

g o 9 R{TTE > !
+2 EI{C"(K'” L= O D =TT (K= CO),
)

C (m,M, r)=
()
2 e -
M(M-1) v IZ/ w20 Ixi = a0,
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where C= C(m, M, 7) and K= K{(m, M, ).
In addition, the ¢ is varied for Tq. (2) but
t=1 for Eq. (3). The BDS statistic originates
from the statistical propertics of the correlation
integral, and 1t measures the  statistical
of the correlation
BDS

distinguish

significance of calculations

dimension. [Even though the statistic

cannot  he used to between  a
nonlincar deterministic svstem and a nonlincar
powerful tool [or

stochastic  system, it is a

distinguishing random time scries from the
time series gencrated by chaotic or nonlincar
stochastic  processes. Its  statistical properties,
along  with  proofs, can be found in  the

literature (Brock et al, 1991, 1996).
22. C-C Method
The with the
properties  of  SGm, N, r, t)=C(m, N, r,t)—
C"(1,N,r t). (1991)
comment in their work: “If a stochastic process

that

present  study 18 concerned

Brock et al made  a

{x;} is did, it will be shown
Clm,7v)=C"(1,») for all m and ». That is
to say, the correlation integral behaves much
like the characteristic function of a scrial string
in that the correlation integral of a serial
string of independent random variables is the
product  of the correlation  integrals — of
component substrings.” This led us to interpret
S(m,N,r, t) as the

correlation  of a

the  statistic serial

nonlincar — time  series.

Therefore, it can  be  regarded as  a
dimensionless measure of nonlinear dependence,
and it can be used to determine an appropriate
£. For fixed m, N, and », a plot
of S(m,N,r )

analog of the plot of autocorrelation {unction

index lag

versus £ 1s  a  nonlinear

versus £,

In order to study the nonlinear dependence
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and eliminate correlations,

{x;}, i=1,2,.., N, are

spurious  temporal
the time series
subdivided into
N/t.

¢ disjoint time scries as follows: For

¢t disjoint time serics of size
S(m, N, r,t) is then computed from the
t=1,
there exists single time series  {x), 29, ..., X},

and

S(m,N,r,1)=C/(m,N,»,1)— CV(1,N,r,1).

(7)
For t=2., two disjoint time  series
{x1, x5, o, x2n 1) and  {xe, x4, ..., x5} are

obtained, each of length N/2. and

S(m,N,r,2)=

LU oz ) - (LN, 7 2))
+{Colm, NI2,7,2) — CY(1,N/2, 7, 2)}].

(&)

For general £, this becomes

Stm,N,r, t)=

LS teonnrn—cran ol

)]

Finally, as N - o0,

Somrty=-1 21[6‘_\.(”1, )= C(1r D],

5=

m=2,3,..
(10)

SCm,r,t) will be
if the data

For fixed wm and f,
identically equal to zero for all »
15 1id and N — oo, However, real data sets
are finite, and data mayv be scrially correlated,
so, in general, S(m, r, )=+ 0. Thus, the locally

optimal times may be cither the zero crossings
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of S(m, r.t) or the times at which S(m, », t)

shows the least variation with 7. since this

indicates  a nearlv uniform  distribution  of

points. Hence, several representative values 7
quantity  AS(m, t) is

arc  selected, and  the

defined as

AS(m, t) = max {S(m, r;, £)} — min {SCm, »,;, £)}.

(1

The locally optimal times ¢ are then the
zero crossings of  S(m, v, ¢) and the minima of
AS(m, ). In the first case, the zero crossings
should be ncarly the same for all m and 7r,
and, in the sccond case, the minima should be
nearly the same for all m (otherwise, the time
is not locally optimal). The delay time 7, will
correspond to the first of these locally optimal
HMes.

In determining the nonlincar dependence of a
series by using  the  statistic

finite  time

S(m,N,», t), one must have criteria  for

sclecting the values of m and  ». In addition,
one must know the role of the sample size N.
IFor a fixed value of N, as m hecomes large,
that

C(lm, N, r, t) hecomes vanishingly small. Also,

the data  become  very  sparse, SO

exceeds the size of the then
Clm, N, 7, t)

points are within the distance #. Thus, neither

i 7 attractor,

saturates,  since most pairs - of
m nor r should be too large.
(1991)

time

BDS

from six

Brock ot al investigated  the

statistic  for serics  generated
asymptotic distributions in order to determine
what values of  m and  »  are appropriate.
N =100,

200, and 1000, were generated by Monte Carlo

Time series with three sample sizes,

stimulation  from  six  asvmptotic  distributions:

standard normal, student t with 3 degrees of
frecdom, double exponential, Chi square with 4
uniform  distribution, and

degrees of  freedom,

bimodal mixture of normals. These studies led

LGBE 19997 1251

2
=

to the conclusion that m should be between 2
and 5 and » should be between ¢/2 and 20.

In addition the asvmptotic  distributions  were

well  approximated by finite time  series  with
N > 3500.
Thus, four values of » in the range

0/2<vr <20, v =050, r.=(10) 0,

(1o, and »,= LMo, are sclected as

representative  values. Then  the  following

averages of the quantities given by Igs. (10)
and (11) are defined as

S =L 2 S stm 0, (12)
l() w2701
451 = % 31 4S(m, 1), 13

The first zero crossing of  S(#) or the first
local minimum of A4S (#) for finding the first
locally  optimal time  for independence of the
data are found, and this gives the time delav

;= tr,. The optimal time is found from the

index lag ¢ for which S(#) and 4S(¢#) are
hoth close to zero. If the equal importance to
assigned, then  the

these two  quantities  are

minimum of the quantity
S (ty=4S(H+ 1 S(H 1, (14)

can simply be found and this optimal time

gives the delav time window 7, = fr,.

3. APPLICATIONS TO HYDROLOGIC
TIME SERIES

Rescarchers have  suggested  obtaining 7,

from the autocorrelation function, which s
practically convenient, since the ACE exhibits
both periodic trends and information dissipation
revealed by its decrease with time. When the
ACF

Tsonis  and

decavs  exponentially  with

(1988)

index  lag,

Elsner suggested  selecting
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the index lag ¢ as the time at which the ACF
drops to 1/e. Otherwise ¢ should be chosen as
cither the first zero crossing or the first local
whichever occurs first
1986,

minimum of the ACF,
(Holzfuss and Mayer Kress,
Elbert, 1990).

We apply the ACI and the C-C method to
three hydrologic

Graf  and

time series and a chaotic
system for measuring general dependence and
choosing 7, and 17, of underlying svstems.
Informations and time series plots on data sets
The ACIEs
and the estimated delay times for used data
2 and Table 2.

can see the ACKF in Fig. 2, a daily streamflow,

are shown in Table 1 and Ing. 1.
As we

sets are shown in Fig.

GSLL volume, and Lorenz time series show long
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Figure 1. Time series plots for a streamflow,
GSL volume, Lorenz system, and a
rainfall.
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Figure 2. ACFs for (a) a streamflow,
(b) GSL volume, (c) Lorenz system,
and (d) a rainfall

Table 2. Estimated delay times using the ACF

Time series Delay time Selection point

Daily streamflow Hl 1/e
GsL volume 14 First minimum

Lorenz x 19 /e
Daily rainfall 3 First minimum

persistence which may  be  associated  with

Hurst
series for the Lorenz system of three coupled

phenomenon.  We  generate  the time

differential equations (Lorenz, 1963):

dx/dt = —alx —vy),
avldt = —xz+ cx— vy,
dz/dt = xy — bz,

(15)

where «, b, and ¢ are constants. We solve this
system of equations for =160, b=40, and
c=4592 to of the

generate a time serles

Table 1. Summary of three hydrologic and a chaotic time series

Country Station Time series Record period Data size
USA St. Johns river near Cocoa, FL Daily streamflow 1979 1988 3650
USA Great Salt Lake, Utah 15 day volume 1847-1992 3578

Lorenz system X-variable 3650
Korea Seoul Daily rainlall 1987 1996 3650

736
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variable x with 7,=0.01. Lorenz time series
i1s from chaotic system, the evidence of chaotic
daily and  GSL

volume data were proved by Kim et al. (1999h)

behavior for a streamflow
(1996), and these ume
related to Hurst
1993h).  The ACI
rainfall fluctuates around zero value,

The S(m, N, r)

streamflow and various values of

and Sangoyvomi et al.
phenomenon
daily

series may  be

(Kim et al, of a

daily

and  »

values  of for a

m
indicate the

arc shown in Fig. 3. The circles
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vicinity of r7,, which is where the first zcro
is obtained by
averaging Fig. 4
indicates  4S(m, t), 4S(t), S(t), and S,,.(¢)

for a daillv streamflow and the minimum of

crossing oceurs, and 7, =89 r,

these four zero  crossings.

S (1) gives 7,=197.. The value of
;= 1lr,. for GGSL volume data is obtained
from the first minimum of 4S(¢) and
T, = 2237, is estimated from S,,.(¢) in Fig.
. The value of 7, =10r, is estimated from
r=0.5%sigma
=1.0
= =18
= =2.0
£
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Figure 3. S(m,r.1} for a daily streamflow.
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Figure 4. (@) 4S(m, ¢), b} (-=): AS(¢#),
(-): Sy, and ©) S, (1) for a
daily streamflow
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Figure 5. () 4S(m. t), (b) (-): 45 (¢),
(-): S(#), and {©) S, (¢) for
GSL volume time series
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Figure 7. (@) 4S(m, t), (b) (-—-): 4S(¢),
(4): S(t), and (¢} S.,, (1) for a
daily rainfall

the first minimum of AS(#), and 7, = 100 .
from S, (f) in Fig. 6 for Lorenz time series.
Ty =371,
48(4), and
from S, (t) in Fig. 7.

For a dailly rainfall, we also obtain

from the first minimum of
Tw =48 Ty

of the delay times and the delay time windows

Summeary

estimated using the ¢ ¢ method for each data
sets are shown in Table 3.

If we compare the delay times estimated
from the ACF and the C C method. we can
streamflow, GSIL volume, and

see  a  daly

738

Table 3. Estimated delay times and delay time
windows using the C-C method.

Time serics Delay time | Delay time window
Daily streamflow 39 194
GSLL volume 11 223
Lorenz 10 100
Daily rainfall 3 48

[orenz time scrics have different results (see
Table 2 and 3).

nonlinearity of the time

This may be due to

series. However, the
delay times estimated from the ACF and the
C-C method for a daily rainfall have same
results (see Table 2 and 3). Tt may be due to
random fluctuations of time series having small
autocorrelations. As proved by Martinere et al.
(1992) the ACF and the
could not estimate the delay time window but
the ¢ ¢ method do. From the results, the ¢ C

method may be better than the ACF or the

mutual  information

mutual information  for describing nonlinear

dependence of the time scries.
CLOSING REMARKS

Martineric et al. (1992) compared the delay

time windows 7, for the Lorenz svstem, a
three-torus, and the Rossler svstem with the
found from the autocorrelation
They

concluded that the autocorrelation function and

delay times 7,

function and the mutual informaion.

the mutual information could not give the

value of r,.. We have used a new method,
called the C-C method, and shown that it can
be used to find both 7, and 7, for some
hvdrologic time scrics and lorenz svstem. It
has shown that the C-C method can be used
for measuring nonlinear dependence of the time
S (1)

analog of

series.  Also  the  value  of may

represent nonlinear lincar
autocorrelation function and it may be useful

for describing the nonlinear dependence of the
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time series.
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