International Journal of Control, Automation, and Systems, vol. 4, no. 3, pp. 293-301, June 2006

Time-Discretization of Time Delayed Non-Affine System via
Taylor-Lie Series Using Scaling and Squaring Technique

Yuanliang Zhang and Kil To Chong*

Abstract: A new discretization method for calculating a sampled-data representation of a
nonlinear continuous-time system is proposed. The proposed method is based on the well-
known Taylor series expansion and zero-order hold (ZOH) assumption. The mathematical
structure of the new discretization method is analyzed. On the basis of this structure, a
sampled-data representation of a nonlinear system with a time-delayed input is derived. This
method is applied to obtain a sampled-data representation of a non-affine nonlinear system,
with a constant input time delay. In particular, the effect of the time discretization method on
key properties of nonlinear control systems, such as equilibrium properties and asymptotic
stability, is examined. ‘Hybrid’ discretization schemes that result from a combination of the
‘scaling and squaring’ technique with the Taylor method are also proposed, especially under
conditions of very low sampling rates. Practical issues associated with the selection of the
method parameters to meet CPU time and accuracy requirements are examined as well. The
performance of the proposed method is evaluated using a nonlinear system with a time-delayed
non-affine input.
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1. INTRODUCTION

Time-delay systems (TDS) are also referred to as
systems with aftereffects or dead-time, hereditary
systems, equations with a deviating argument, or
differential-difference equations. The development
and evolution of Internet technology has increased
interest in control systems with time delays due to the
convergence of communication and computations in
control systems and the complex behavior of control
systems with non-negligible time delays. Digital
controllers using communications and increased
computation requirements in systems induce the time
delay. Also, time-delay systems often appear in
industrial systems and information networks. Thus, it
is important to analyze time-delay systems and design
appropriate controllers. Control systems with time
delays exhibit complex behaviors because of their
infinite dimensionality. Even in the case of linear
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time-invariant systems that have constant time delays
in their inputs or states have infinite dimensionality if
expressed in the continuous time domain. It is
therefore difficult to apply the controller design
techniques that have been developed during the last
several decades for finite-dimensional systems to
systems with any time delays in the variables. Thus,
new control system design methods that can solve a
system with time delays are necessary.

Traditional numerical schemes for ordinary
differential equations, such as Runge-Kutta schemes,
usually fail to attain their asserted order when applied
to ordinary differential control equations due to the
measurability of the control functions. Griine and
Kloeden extended a systematic method for deriving
high-order schemes for affine controlled nonlinear
systems to a larger class of systems in which the
control variables were allowed to appear nonlinearly
in multiplicative terms [1].

In the field of discretization, traditional numerical
techniques, such as the Euler and Runge-Kutta
methods, have been used to obtain sampled-data
representations of original continuous-time systems in
the delay-free case [2]. But these methods require a
small sampling time interval to meet the desired
accuracy; they cannot be applied to cases with the
large sampling periods. Due to the physical and
technical limitations, slow sampling has become
inevitable. A time discretization method that expands



294 Yuanliang Zhang and Kil To Chong

the well-known time-discretization of linear time-
delay systems [2,3] to nonlinear continuous-time
control systems with time delays [4-6] can solve this
problem. The effect of this approach on system-
theoretic .properties of nonlinear systems, such as
equilibrium properties, relative order, stability, zero
dynamics, and minimum-phase characteristics has
also been studied [7] and reveals the natural and
transparent manner in which Taylor methods permeate
the relevant theoretical aspects.

At present, modern nonlinear control strategies are
usually implemented using a microcontroller or digital
signal processor. As a direct consequence, control
algorithms must operate using discrete time intervals.
The time discretization is based either on a
continuous-time control law designed assuming a
continuous-time system, or on a discrete-time control
law designed for a continuous-time system that results
in a discrete-time system. It is apparent that the
second approach is an attractive feature for dealing
directly with the issue of sampling. The effect of
sampling on the system-theoretic properties of a
continuous-time system is very important because it is
associated with attaining the design objectives. It
should be emphasized that in both design approaches,
a time discretization of either the controller or the
system model is necessary. Furthermore, notice that in
the controller design for time—delay systems, the first
approach is troublesome because of the infinite-
dimensional nature of the underlying system
dynamics. As a result, the second approach becomes
more desirable and will be pursued in the present
study.

This paper proposes a time discretization method
for nonlinear control systems with non-affine time-
delay control inputs. The proposed discretization
scheme applies a Taylor series expansion according to
the mathematical structure developed for delay-free
nonlinear systems [7,8]. The effect of sampling on the
system-theoretic properties of nonlinear systems with
time-delayed non-affine inputs, such as equilibrium
properties and stability, is examined. Also, the well-
known “scaling and squaring” technique (SST), which
is widely used for computing the matrix exponential
[9], is applied to the nonlinear case, when the
sampling period is too large.

In particular, the paper makes the following
contributions:

* A new method is proposed for the time-
discretization of nonlinear dynamic systems with
time-delay non-aftine input based on Taylor-Lie
series; the resulting descrete-time system (or
sampled-data representation) preserves/inherits
some of the system-theoretic properties of the
original continuous-time system (such as
equilibrium and stability properties), and also it is
finite dimensional, thus allowing the direct

application of existing nonlinear control system

design techniques;

* The ‘hybrid’ discretization schemes, that results
from a combination of the ‘scaling and squaring’
(or extrapolation to the limit) technique with the
Taylor method is proposed when the sampling
period is large.

* The proposed method and discretization algorithm
is tested by using a nonlinear system with time-
delay non-affine input. For this nonlinear control
system various sampling rates and time-delay
values are considered, demonstrating the accuracy
of the proposed discretization scheme.

The paper is organized as follows: Section 2 first
presents some mathematical preliminaries regarding
the structure of the nonlinear time-delay control
system investigated; briefly presents the time-
discretization of nonlinear systems with delay free
input; and part 2.2 contains the main results of this
paper, where a new time-discretization method and
procedure for nonlinear control systems with time-
delay non-affine input is introduced. Section 3
presents the ‘hybrid’ discretization scheme that results
from a combination of the ‘scaling and squaring’
technique with the Taylor method when the sampling
period is large. Finally, Section 4 includes a nonlinear
continuous system with non-affine input studies
demonstrating the effectiveness of the proposed
discretization scheme, whereas Section 5 provides a
few concluding remarks drawn from this study.

2. TIME-DISCRETIZATION OF DELAYED
NON-AFFINE NONLINEAR SYSTEMS

In the present study, single-input nonlinear
continuous-time control systems are considered with
state-space representations of the form [4]:

dx(t)
dt

= J(x(0) + g(x(D)u(t - D), (M

where x e X < R"is the state vector, X is an open
and connected set, u € R is the input variable, and D
is the system constant time delay (dead-time) that
directly affects the input. It is assumed that f(x), g(x)
are real analytic vector fields on X.

An equidistant grid on the time axis with a

meshT =¢,,,—t, >01is considered, where [tk , tk l)
+

=[kT,(k +1)T)is the sampling interval and 7T is the

sampling period. It is assumed that system (1) is
driven by an input that is piecewise constant over the
sampling interval, i.e. the zero-order hold (ZOH)
assumption holds true:

u(t) =u(kT) = u(k) = constant , 2
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for kT <t < kT +T . Furthermore, let:
D=qT +y, 3)

where ¢ {0, 1, 2, ...
delay D can be represented as an integer multiple of
the sampling period plus a fractional part of 7 [2,3].

tand O<y <T,ie. the time-

2.1. Discretization of nonlinear systems with delay-
free inputs
Delay-free (D =0) nonlinear control systems are

considered with state-space representations of the
form:

dx(f ) £(x(t)) +u(t)(x(1)) . @

Within the sampling interval and under the ZOH
assumption, the solution of (4) can be expanded in a
uniformly convergent Taylor series [10]:

x(k +1) = Op (x(k),u(k))
T d'x

_x(k)+zl' d’

©)

= x(k) +2A[” (x(k), u(k))

=1

where x(k) is the value of the state vector x at time
t="t; =kT and AV (x,u) are determined recursively by

AN xu) = f(x0) +ug(x),

[1
o (x AT XU 1)+ ug(x)) ©)
w1th l—1,2, 3,....

A[M](x, )

2.2. Discretization of nonlinear systems with delayed
non-affine input

The equations of time-delayed single non-affine input

nonlinear control systems are as follows [11,12];

X(1) = fo (x(0) + g (x()u(t — D)

+ g (Ot~ D)? + ...+ g, (x(t)u(t ~ DY,
and x(t) = f(x(t),u(r - D)), @)

where x e R"
fo:R">R", g :R" >R", i=12,.

is the state, u € R is the control input,
,mand f:R"

xR — R" are smooth mappings.

Based on the ZOH assumption and the above
notation one can deduce that the delayed input
variable attains the following two distinct values
within the sampling interval:

u(kT —qT -Ty=u(k—q-1)

ifkT <t<kT +y
u(t— D)= 3
ukT —gT)=u(k —q)
kT +y <t <kT+T.
Non-affine nonlinear systems can also be

discretized using Taylor series expansions. From the
ZOH assumption, we obtain;
o kT <t<kT+y

The exact sampled-data representation (ESDR) is
x(kT +y) = x(kT)
®

© !
+ 2 A GUT), utk-g -0,
I=1 '

and the approximate sampled-data representation
(ASDR) resulting from truncating the Taylor series at
order N is

x(kT +7) = x(kT)

+ Z A (x(kT), u(k — g - 1)) (10)
/=1
o kT+y<t<kT+T
The ESDR is
x(kT +T)=x(kT +%)
+ ZA’ (KT + ), u(k — q))~—22 (T - 7) ’ (11)
I=1
and the ASDR is
x(kT +T)=x(kT +7)
(T - ;/) ( 12)

+ZA’ (x(kT +y),u(k — q))—2
I=1

The generalized coefficients are represented as
follows:

AV u)= £ u), A (e, u)

4] (13)
_ oAY (x,u) f),
ox

Definition 1: Given f, an analytic vector field on

R" and h, an analytic scalar field on R”", the Lie
derivative of h with respect to f is defined in local
coordinates as

Oh
+ _—
ox

n

th(x)=%f1 ¥ fo- (14)
1

In light of Definition 1, the solution to the recursive
relation (13) may be represented in terms of higher-
order Lie derivatives as follows:



296 Yuanliang Zhang and Kil To Chong

!
AV u)=(Ly +uLy +u’Ly, +..+u"L, ) x,(15)

0 5}
where LfO :fb(x)a, 81 =g](x)aa ng :gZ(x)

0 0
— s Ly = x)— are Lie derivative operators.
. Zm = &m(¥) . p

Theorem 1: Let x° be an equilibrium point of the
original non-affine input nonlinear continuous system

(1) = fy(x) +ug (x) + 12 gy (X) +...+ 4" g, (%), (16)

that belongs to the equilibrium manifold

Ec={xeR"

HueR:f(x,u):O}. 7

Let u=u bethe corresponding equilibrium value

of the input variables f (xO uo) =0. Then x" belongs

to the equilibrium manifold: E¢ = {xeR” JueR:

P (x,u) = x} of the ESDR: x(k +1) = ®2 (x(k), u(k

—g—1),u(k—gq)) and ASDR: x(k+1)= NP (x(k),
u(k—q-1), u(k—¢q)), where is obtained using the
proposed Taylor-Lie discretization method, with
u=u’ being the corresponding equilibrium values of
the input variables: (D? (xo,uo) =x and G)ITV D
(xo ,uO) =x°.

Proof: x° is the equilibrium point and »° are the
corresponding equilibrium values of the input

variables = AN (x? 4%) = £,(x*) +u’g; (x%) +(@")?

g0+ .+ @)™ g,%) =0 =AM W0 =
[M,.0 .0
aA—%:x’—MA[I](xO,uO)zo, forall 7e{1,2,3,..}.

In the time interval¢ € [kT, kT + ]

=0 (x ) =x +ZA[I](x uO)
I=1

In the time interval ¢ e[kT + y, kT + T
o7 (%, u’) =7, (@, (x°,u%),u")=x".

Similar arguments apply to the d)y D map of the

ASDR. Therefore, x° belongs to the equilibrium

manifold E of the ESDR and ASDR for any finite
truncation order N.
The following technical lemma is essential [7]
Lemma 1: In the single input status, let x* be an

equilibrium point of x(r) = f(x(?))+ g(x())u(t - D)

. For any analytic scalar
the following

that corresponds to u ="
field A(x), and positive integer /,

equality holds:

aa[Lf +ul ] h(x)l(x W= [Zﬁ oagil (x°).

(18)

oV
a—aT—(xO,uO) can be
e

The i—th row of matrix

calculated as follows:

8(13 N T!
10y = Z [(Lf +uLy) x’}(XO,uO)W
a9
= 8x ax Ox I
Theorem 2: Assume that matrix M= [%{0—4—
X

+u0?£+( 0y2Ze2 %) +o+ (0" % (x%) is a Hurwitz
ox ox ox

matrix, so thatx’is a locally asymptotically stable
equilibrium point of the delay-free system:

x(1) = fo (x(0) + gy (x(D))u(?)

) ) " (20)
+ gy (xe(EDu” () + ...+ g, (x(O)u™ (2).
Then x” is a locally asymptotically stable
equilibrium point of the ESDR and ASDR for
sufficiently large N when T is fixed.
Proof: From Lemma 1,

N N (%+u°%+(uo)2—agz +
aCDT 0,0 ox ox ox
T T 8 r!
=0 0m 98m~l, 0
+ 20N (5 y—
(u”) o ) G )” (21)
N !
=ZMI-T—'—.
=0 /!

For an ASDR of finite truncation order N, or for the
ESDR(N — ) :

(%Jruo %1 +(@®)? %Jr
0x ox Ox

—a;DT (x%,u%) = exp 5
* et @Oy Loy Oy
Ox

(22)

= exp(MT).

i) Consider now the ESDR with time-delay D.
Notice that:
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D oDy ob
O (30,10 = L2 @, ()Y L 6

%(xo,uo) (23)

a(DT—y 0.0
- ax (x 9”)

=exp(M(T —y))exp(My) = exp(MT).
Since M is a Hurwitz matrix, it can be inferred that

- a®? o o
all the eigenvalues of ——(x",u ) have a modulus

X
of less than 1. Hence x° is a locally asymptotically
stable equilibrium point of the ESDR.

ii) Consider now the ASDR. Here,

N,D

oDy

aan .,

(x°,u%) = (@, (°,u )uo)

(XU)

8(13 -
-— (x",uo)—’ <x°,u°)
6x

{Z M” (T - 7) }{ZMII (7) }

1!
h= 2 h=0 ht
N

b T2
=0 /=0 !

(24)
of M

the corresponding eigenvalue a; of

Notice that for a stable eigenvalue A,
(Re[i]<0)

T-pe)h .
(x u) a; = 2,12+11——— 18
122_:0 112 L

stable only when |ai| <1.

Since for a fixed T and as N — w,aq; = exp(4,(T
—y)exp(Ay) =exp(4T), one can always find a

sufficiently large order of truncation N such

that: |al-|<1. Therefore x"is a locally asymptotically

stable equilibrium point of the ESDR and the ASDR
for sufficiently large N when T is fixed.

3. SCALING AND SQUARING
TECHNIQUE (SST)

The Taylor-Lie series method gives the necessarily
accurate results, provided that the order N is very
large if the sampling interval 7 is large. But when T
is large, AT /11 becomes extremely large due to
the finite-precision arithmetic before it becomes small
at higher powers when convergence takes over. In the
case of a linear system, this phenomenon occurs when

T
calculating e and L e’ dt , which causes overflow

errors in the computational number representations.
A scaling and squaring technique which is also

called an extrapolation to the limit technique in
numerical analysis literature can be applied to solve
this type of problem. This technique is commonly
used to calculate the exponential matrix exp(47) for
large sampling periods. By applying the SST, one can
subdivide the sampling interval T into two or more
subintervals of equal length. An appropriate positive
integer m can be chosen such that 7/2" is sufficiently
small to calculate the exponential matrix. In this case,
the sampling period T is subdivided into 2" equally
spaced subintervals of length 7/2" and the exponential
matrix is calculated for the short interval 7/2". Finally,
the computation of exp(A7) is performed by squaring

the matrix exp(A7/2™)m times:

exp(AT) = (((exp(Azl,,,))2 o 25)

The SST can be extended to nonlinear cases by
applying the Taylor-Lie series method. Analogous to
the linear case, one can use nonlinear operators and
powers of operators as substitutes for matrices and
matrix products. The key idea of the nonlinear
application of the SST remains the same as for the
linear case.

In the nonlinear case when 7 is sufficiently large,
one can divide the interval [#;,f,)to 2" equally
spaced subintervals and use a small Taylor expansion
order N with a time step 7/2" for the 2" intermediate

subintervals to substitute the larger order N used in
the single-step Taylor method case.
Assume now that Q(N',T): R" — R" is the operator

that corresponds to the Taylor expansion of

order N with a time step 7, and when it acts on
x(kT) the outcome is:

x(kT +T) = Q(N ", T)x(kT), (26)
where
QN TY) =1+ Z A (x(k), u(k))— 27)

I=1

Using operator notation the resulting discrete-time
system may now be written as follows:

T\
x(kT+T)={QEN,E”7):[ X(KT). (28)

The above ASDR may be viewed as the direct
result of the combination of Taylor’s method and the
SST.

The choice of the parameters of N and m is an
important consideration. Different values of N and m
can reflect different requirements of the discretization
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performance. In this paper, we focused on simplicity
and computing time, and numerical convergence and
accuracy requirements to select these parameters. The
criterion for selecting an appropriate m is a
comparison of the magnitude of the sampling period T
with the fastest time constant1/p of the original
continuous-time system. If 7 is small compared
to2/p, we can setm = 0and we apply the single-step
Taylor-Lie series method. Since T is small, a low
order N single-step Taylor discretization method is
usually sufficient to meet the expected accuracy
requirements. If T is larger than the fastest time
constant2/ p, we must apply the SST. The sampling

interval is therefore subdivided into 2” subintervals,
and a low-order N single step Taylor discretization
method is used for each subinterval. This requests that
the following inequality holds:

T 2

— <=, : (29)

2" p

Since the requirements for numerical convergence

and stability are also met, the positive integer m is
now selected to be

m = max ([logQ (%H +1, Oj , (30)

where 6 <2/p is chosen arbitrarily and [x] denotes

the integer part of the number x. It is evident that
smaller values of the arbitrarily selected number &

would result in more stringent bounds on T/2" .

The SST can also be applied to nonlinear control
systems with time-delayed non-affine inputs. In this
case, we do not consider the single sampling interval
T but only the subintervals of y,7—y. The same

method can be used to select m by;changing T of the
preceding equality into the subintervals of y,7 -y,

1e.,

m, = max [{logz [%in + 1,0] , 3
my_, = max Hlog2 (Tl; Y H + 1,0] . (32)

4. SIMULATIONS

The performance of the proposed time discretiza-
tion of non-affine nonlinear systems with input time
delays using the Taylor series expansion method with
the SST was evaluated by applying it to a non-affine
system. This system exhibited nonlinear behavior and
was studied for a broad range of sampling periods and
input delay values. In this paper, the continuous

Matlab ODE solver was used to obtain an exact
solution for the system in order to wvalidate the
proposed discretization method.

The system considered in this paper was a single-
input non-affine nonlinear system with a small fastest
time constant 1/p.

X = —x13 + x1x2u2 +3cos(x,)xq, 33
L (33)
Xy = XoU

The largest eigenvalue of the linear approximation
of this system was 3, so that2/p= 0.6667 . The

inputu was assumed to beu =3+ 0.4cos(0.4x,). The
stability of the system changed with the initial
conditions, which are assumed to be x(0)=1,

%5(0) =—1in order to make the system stable. First,

we chose a small sampling period and a small time
delay to validate the discretization method proposed
in this paper. The sampling period (7) is 0.02sec

and the input delay is 0.028sec. In this case, T <2/ p,

and therefore, a low order N single-step Taylor
method was appropriate. Indeed, even a third-
order N =3 single-step Taylor method provided an
accurate discrete-time model. The resulting value of
states x; and x, which are responses of the Taylor

method and the Matlab solutions are shown in Table 1.
The results obtained from these two methods are also
shown in Fig. 1. Differences between the responses of
the two methods are illustrated in Fig. 2. The results
demonstrated that the proposed discrtzation method
for nonlinear systems with delayed non-affine inputs
was sufficiently accurate.

We then chose a sampling period of 7 =0.10s
and an input delay of D =0.06s. First we used the
single-step Taylor method with N =3. The results of
states x; and x; which are response of the Taylor
method and Matlab solutions, states x; and x,, are

Table 1. State response of the system for case 1.

Time State Xl\l/[ 1 State XI\Z/[ 1
aple aple
step Matlab (N f 3) Matlab (N=3)
100 0.2341 0.2350 | -0.1299 | -0.1300
200 1.4509 1.4509 | -0.0690 | -0.0690
300 1.5602 1.5602 | -0.0470 | -0.0470
400 1.6038 1.6051 | -0.0356 | -0.0356
500 1.6312 1.6313 | -0.0287 | -0.0287
600 1.6483 1.6485 | -0.0240 | -0.0240
700 1.6606 1.6607 | -0.0206 | -0.0206
800 1.6696 1.6698 | -0.0181 | -0.0181
900 1.6758 1.6768 -0.0161 -0.0161
1000 1.6819 1.6824 | -0.0145 | -0.0145
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results of the system
T

Table 3. State response of the system for case 2(N=7).

2
ol 1 Time State x1 State x2
' Step | Matlab | Maple | Matlab | Maple
= . 20 | 02272 | 0.2278 | -0.1318 | -0.1318
0s} J 40 | 1.4470 | 1.4470 | -0.0695 | -0.0695
. , , 1 > T 60 | 1.5592 | 1.5592 | -0.0472 | -0.0472
0 10 S 50 &0 80 | 1.6037 | 1.6046 | -0.0357 | -0.0357
—__ 100 | 1.6309 | 1.6310 | -0.0287 | -0.0287
********** 120 | 1.6480 | 1.6483 | -0.0240 | -0.0240
0o 1 140 | 1.6603 | 1.6605 | -0.0207 | -0.0207
¥ 01 1 160 | 1.6695 | 1.6696 | -0.0181 | -0.0181
o015 ] 180 | 1.6751 | 1.6767 | -0.0161 | -0.0161
o) , . . + 22 Dirtizalon 200 | 1.6822 | 1.6823 | -0.0145 | -0.0145
’ 10 20 30 40 50 B0

i[sec)

Fig. 1. State results of the system for case 1.

state error of x1 and x2

x10°

state error of x1 and %2

state error

0 10 20 30 40 50 60
5 f[sec]
x 10
1 T T
—
of [T —————— — — —
£ TR ! 4
§ 2} ; ]
T
3l
Iy
4 1 1 1 L 1
0 10 20 30 40 50 &0

t[sec)

Fig. 2. State error response of the system for case 1.

Table 2. State response of the system for case 2(N=3).

Time State x1 State x2

Step | Matlab | Maple | Matlab | Maple
20 0.2272 0.2628 | -0.1318 | -0.1324
40 1.4470 1.4495 -0.0695 | -0.0697
60 1.5592 1.5589 -0.0472 | -0.0472
80 1.6037 1.6044 -0.0357 | -0.0358
100 1.6309 1.6308 -0.0287 | -0.0288
120 1.6480 1.6482 | -0.0240 | -0.0241
140 1.6603 1.6605 -0.0207 | -0.0207
160 1.6695 1.6696 | -0.0181 | -0.0181
180 1.6751 1.6766 | -0.0161 | -0.0161
200 1.6822 1.6823 | -0.0145 | -0.0145

state error

state error

t[sec]

Fig. 3. State error response of the system for case 2.

Table 4. State response of the system for case 3.

. State x1

o | Mattab Maple

Step atia N=2 =7 | N=10
2 | 0.0979 x * x
4 | 03294 * * x
6 | 12847 x * *
8 | 1.5007 * * *
10 | 1.5531 * * *
. State x2

o Matlab Maple

Stp atla N=2 N=7 | N=10
2 | -0.2368 | -2.0420 * *
4 | -0.1205 * % *
6 | -0.0808 * * *
8 | -0.0608 x * *
10 | -0.0487 * * *

shown in Table 2. Then we used N =7 ; the resulting
states x; and x, which are response of the Taylor

method and Matlab solution are shown in Table 3.
Differences in response for these two cases with the
Matlab solution are shown in Fig. 3. The computing

*Denotes order of magnitude greater than 10°.

time used by these two cases were 0.28s and 17.76s,
respectively. These results indicate that the Taylor
series expansion order N must be enlarged when the
sampling interval is large to improve the accuracy of
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Table 5. State response of the system for Case 3

(SST).
. ' State x1 (Maple
Tsi‘ene N=3 N=7 N=3
P =am=4 | 1=5m=5 | 1=10m=10
2 0.1005 0.1009 0.1009
4 0.3357 0.3368 0.3368
6 1.2873 1.2880 1.2880
8 1.5006 1.50006 1.5006
10 1.5530 1.5530 1.5530
. State x2 (Maple
ngle N=3 N=7 N=3
Pl 1=4m=4 I=5,m=5 | 1=10,m=10
2 -0.2376 -0.2376 -0.2376
4 -0.1207 -0.1207 -0.1207
6 -0.0809 -0.0809 -0.0809
8 -0.0608 -0.0608 -0.0608
10 -0.0487 -0.0487 -0.0487
Table 6. Computing time required for the SST.
N=3,1=4 | N=7,1=5 | N=3, =10
m=4 m=5 m=10
Computing | 550 | T=109.94s | 79.49s
time
x10° state error of x1 and x2

— x1 =4, m=4 N=3
— - x2|F4,m=4 N=3 |

state error

state error

5 1 1 L 1 1
%10 1 2 3 4 5 &
10 . i
= — x1,=10,m=10,N=3
s 5t — . 2J=10m=10N=3
[:4]
® Op~<.-—_.___. [ ey
w
5 1 1 1 1 1
0 L 2 3 4 5 6

Fig. 4. State error response of the system for case 3.

the solution. But at the same time, there is a major
increase in the amount of computing time required.
For our final case, we selected T'=0.6sec and
D=0.25sec . First we used a single-step Taylor
method with N =2,7,10 respectively. The results of

states x; and x, for the Taylor method and Matlab

solution are shown in Table 4 respectively.
In this case T and D are comparable to 2/p and
therefore, as previously stated, it was difficult to

obtain the desired accuracy using only a high order
single-step Taylor method. From Table 4 the results of

the Taylor series method were not useful even when
the Taylor order N was increased to 10. In addition,
1223.65s were required to obtain the solution. In this
case it is advisable to use the SST discretization
scheme. From the definitions given in the previous

section ¢=0 and y =0.25. Assuming /= m, and m =

my_, are the scaling and squaring coefficients m of

the two time intervals of [£kT,kT +y) and [AT +y,
kT +T).Wethenchose N=3,/=6 m=6; N=17,
[=5 m=5 and N =3,1=10,m=10 respectively.
The results of states x; and x, of the Taylor method and

Matlab solutions are shown in Table 5 respectively.
Differences in response for these three methods are
shown in Fig. 4. The computing time required for ten
steps with these parameters is presented in Table 6.
From these results, it is more efficient to use the SST
when the sampling period T is large. Caution is
required when selecting the SST parameters to save
computing time.

5. CONCLUSIONS

This paper presented an approach to obtain
discrete-time representations of nonlinear control
systems with non-affine time-delay inputs in their
control schemes. It was based on the ZOH assumption
and the Taylor series expansion, which was obtained
as a solution of continuous-time systems. The
mathematical structure of the new discretization
scheme was explored and characterized as useful for
establishing concrete connections between numerical
and system-theoretic properties. In particular, the
effect of the time discretization method on key
properties of nonlinear control systems with non-
affine input time delays, such as equilibrium
properties and asymptotic stability, was examined.
The well-known scaling and squaring technique was
expanded to nonlinear cases when the sampling period
was too large. The proposed scheme provided a finite-
dimensional representation for nonlinear systems with
non-affine time-delay inputs enabling existing
controller design techniques to be applied. The
performance of the proposed discretization scheme
was evaluated using a nonlinear system. Various
sampling rates and time-delay values were considered,

demonstrating the accuracy of the proposed
discretization scheme.
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