• 제목/요약/키워드: nonlinear system modeling

검색결과 715건 처리시간 0.03초

Design of a Fuzzy Model Based Sliding Mode Control for Nonlinear Systems

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1516-1520
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control a nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

  • PDF

Indirect Adaptive Fuzzy Sliding Mode Control for Nonaffine Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.145-150
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

LPD(Linear Parameter Dependent) System Modeling and Control of Two Wheeled Mobile Robot

  • Kang, Jin-Shig
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.76.2-76
    • /
    • 2002
  • Because of the wheeled mobile robot is modeled by nonlinear system framework and controlled by nonlinear algorithms or fuzzy algorithms, the treatment of wheeled mobile robot is very complecate and conservative. In this paper, a new model of two wheeled mobile robot, which is a type of linear system and treated easily, is presented. And we will show that the control algorithms based on the linear system theory is well work to the wheeled mobile robot by simulation and experiment.

  • PDF

퍼지 클러스터링을 이용한 고농도오존예측 (Forecasting High-Level Ozone Concentration with Fuzzy Clustering)

  • 김재용;김성신;왕보현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF

강체운동 비선형 효과를 고려한 맥동 종동력을 받아 비행하는 보 구조물의 모델링 및 안정성 해석 (Modeling and Dynamic Stability Analysis of a Flying Beam Undertaking Pulsating Follower Forces Considering the Nonlinear Effect Due to Rigid Body Motion)

  • 현상학;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.510-515
    • /
    • 2000
  • Dynamic stability of a flying structure undertaking constant and pulsating axial forces is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. The analysis model presented in this paper considers the nonlinear effect due to rigid body motion of the beam. Dynamic stability of the system is influenced by the nonlinear effect. In order to examine the nonlinear effect, first the unstable regions of the linear system are obtained by using the method based upon Floquet's theory, and dynamic responses of the nonlinear system in the unstable region are obtained by using direct time integration method. Dynamic stability of the nonlinear system is determined by the obtained dynamic responses.

  • PDF

비선형 시스템식별에 의한 무인비행기의 수학적 모델 적합성 (Validation of Mathematical Models of UAV by Using the Parameter Estimation for Nonlinear System)

  • 이환;최형식;성기정
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.927-932
    • /
    • 2007
  • The sophisticated mathematical model is required for the design and the database construction of the advanced flight control system of UAV. In this paper, flight test of KARI's research UAV, often called DURUMI-II, is implemented for the data acquisition from the maneuver flight. The flight path reconstruction is implemented to ensure that the measured data is consistent and error free. The nonlinear system identification for the refined mathematical modeling is implemented with the verified measurements from the flight path reconstruction. The simulation with the identified results have a good validation when the simulated responses were compared to the flight tested data.

고이득 관측기를 이용한 적분 슬라이딩 모드 제어 (Integral sliding Mode Control with High-gain Observer)

  • 오승록;신준형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.233-236
    • /
    • 2002
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainties. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the it presence of input coefficient uncertainty.

  • PDF

T-S 퍼지 모델을 이용한 역진자 시스템의 안정화 제어기 설계 (Design of Stabilizing Controller for an Inverted Pendulum System Using The T-S Fuzzy Model)

  • 배현수;권성하;정은태
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.916-921
    • /
    • 2002
  • We presents a new method of constructing an equivalent T-S fuzzy model by using the sum of products of linearly independent scalar functions from nonlinear dynamics. This method exactly expresses nonlinear systems and automatically determines the number of rules. We design a stabilizing controller f3r ul inverted pendulum system by using the concep of parallel distributed compensation (PDC) and linear matrix inequalities (LMIs) based on the proposed T-S fuzzy modeling method. We show effectiveness of a systematically designed fuzzy controller based on the proposed T-S fuzzy modeling method through the simulation and experiment of an inverted pendulum system.

시간지체 순환신경망모형을 이용한 수문학적 모형화기법 (Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF

인조신경망을 이용한 좌심실보조장치의 동적 모델링

  • 김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.346-350
    • /
    • 1996
  • This paper presents a Neural Network Identification (NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulation system of Left Ventricular Assist Device(LVD). This system consists of electronic circuits and pneumatic driving circuits. The initation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded. System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, Heart Rate(HR), Systole-Diastole Rate(SDR), which can vary state of system, and preload, afterload, which indicate the systemic dynamic characteristics and output parameters are preload, afterload.

  • PDF