• 제목/요약/키워드: nonlinear stability

검색결과 1,790건 처리시간 0.032초

LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • Goo, Yoon Hoe
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권1호
    • /
    • pp.11-21
    • /
    • 2014
  • The present paper is concerned with the notions of Lipschitz and asymptotic stability for perturbed nonlinear differential system knowing the corresponding stability of nonlinear differential system. We investigate Lipschitz and asymtotic stability for perturbed nonlinear differential systems. The main tool used is integral inequalities of the Bihari-type, in special some consequences of an extension of Bihari's result to Pinto and Pachpatte, and all that sort of things.

LYAPUNOV FUNCTIONS FOR NONLINEAR DIFFERENCE EQUATIONS

  • Choi, Sung Kyu;Cui, Yinhua;Koo, Namjip
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.883-893
    • /
    • 2011
  • In this paper we study h-stability of the solutions of nonlinear difference system via the notion of $n_{\infty}$-summable similarity between its variational systems. Also, we show that two concepts of h-stability and h-stability in variation for nonlinear difference systems are equivalent. Furthermore, we characterize h-stability for nonlinear difference systems by using Lyapunov functions.

Nonlinear PSE를 이용한 경계층의 비선형 안정성 해석 (Nonlinear Stability Analysis of Boundary Layers by using Nonlinear Parabolized Stabiltiy Equations)

  • 박동훈;박승오
    • 한국항공우주학회지
    • /
    • 제39권9호
    • /
    • pp.805-815
    • /
    • 2011
  • 비선형 포물형 안정성 방정식(Nonlinear Parabolized Stability Equations, NPSE)은 보다 전체적인 천이 과정 연구에 효과적으로 사용될 수 있다. NPSE는 천이 과정에서 비선형 구간의 안정성을 직접 수치 모사(Direct Numerical Simulation, DNS)에 비해 적은 계산 비용을 사용하여 효율적으로 해석 할 수 있다. 본 연구에서는 일반 좌표계에서의 NPSE를 구성하고, 수치 계산을 위한 코드를 개발하였다. 코드의 검증을 위해 비압축성 및 압축성 평판 경계층에서의 벤치마크 문제들을 해석하였다. 본 연구의 NSPE 해석 기법이 비선형 안정성 연구에 효율적이고 효과적인 방법임을 확인하였다.

A NEW APPROACH TO EXPONENTIAL STABILITY ANALYSIS OF NONLINEAR SYSTEMS

  • WAN ANHUA
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.345-351
    • /
    • 2005
  • An effective method for analyzing the stability of nonlinear systems is developed. After introducing a novel concept named the point- wise generalized Dahlquist constant for any mapping and presenting its useful properties, we show that the point-wise generalized Dahlquist constant is sufficient for characterizing the exponential stability of nonlinear systems.

ON THE STABILITY AND INSTABILITY OF A CLASS OF NONLINEAR NONAUTONOMOUS ORDINARY DIFFERENTIAI, EQUATIONS

  • Sen, M.DeLa
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.243-251
    • /
    • 2003
  • This note Presents sufficient conditions for Lyapunov's stability and instability of a class of nonlinear nonautonomous second-order ordinary differential equations. Such a class includes as particular cases a remarkably large number of differential equations with specific physical applications. Two successive nonlinear transformations are applied to the original differential equation in order to convert it into a more convenient form for stability analysis purposes. The obtained stability / instability conditions depend closely on the parameterization of the original differential equation.

On asymptotic stability in nonlinear differential system

  • An, Jeong-Hyang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.597-603
    • /
    • 2010
  • We obtain, in using generalized norms, some stability results for a very general system of di erential equations using the method of cone-valued Lyapunov funtions and we obtain necessary and/or sufficient conditions for the uniformly asymptotic stability of the nonlinear differential system.

슬라이딩 모드 제어를 이용한 3축 안정화 위성의 자세 제어및 강건성 해석 (Robust attitude control and analysis for 3-axis stabilized spacecraft using sliding mode control)

  • 신동준;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.692-695
    • /
    • 1997
  • Nonlinear robust attitude controller for 3-axis stabilized spacecraft is designed. Robust stability analysis for nonlinear spacecraft system with disturbance is conducted. External disturbances and parametric uncertainties decrease Spacecraft's attitude pointing accuracy. Sliding Mode Control(SMC) provides stability of system in the face of these disturbances and uncertainties. The concept of quadratic boundedness and quadratic stability are applied to the robust analysis for the nonlinear spacecraft system subject to bounded disturbance torques. Numerical simulation is conducted to compare the analysis result and actual nonlinear simulation. The simulation show that analysis result is valid.

  • PDF