$h ext{-STABILITY OF THE NONLINEAR DIFFERENTIAL}$ SYSTEMS VIA $t_\infty ext{-SIMILARITY}$

Yoon Hoe Goo*

ABSTRACT. In this paper, we investigate h-stability of the nonlinear differential systems using the notion of t_{∞} -similarity.

1. Introduction and basic facts

We consider the nonlinear nonautonomous differential system

(1.1)
$$x'(t) = f(t, x(t)), \quad x(t_0) = x_0,$$

where $f \in C(\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n)$, $\mathbb{R}^+ = [0, \infty)$ and \mathbb{R}^n is the Euclidean n-space. We assume that the Jacobian matrix $f_x = \partial f/\partial x$ exists and is continuous on $\mathbb{R}^n \times \mathbb{R}^n$ and f(t,0) = 0. For $x \in \mathbb{R}^n$, let $|x| = (\sum_{j=1}^n x_j^2)^{1/2}$. For an $n \times n$ matrix A, define the norm |A| of A by $|A| = \sup_{|x| < 1} |Ax|$.

Let $x(t, t_0, x_0)$ denote the unique solution of (1.1) with $x(t_0, t_0, x_0) = x_0$, existing on $[t_0, \infty)$. Then we can consider the associated variational systems around the zero solution of (1.1) and around x(t), respectively,

$$(1.2) v'(t) = f_x(t,0)v(t), \ v(t_0) = v_0$$

and

$$(1.3) z'(t) = f_x(t, x(t, t_0, x_0))z(t), \ z(t_0) = z_0.$$

The fundamental matrix $\Phi(t, t_0, x_0)$ of (1.3) is given by

$$\Phi(t, t_0, x_0) = \frac{\partial}{\partial x_0} x(t, t_0, x_0),$$

and $\Phi(t, t_0, 0)$ is the fundamental matrix of (1.2).

Received April 29, 2010; Revised May 17, 2010; Accepted June 01, 2010. 2010 Mathematics Subject Classification: Primary 34D10.

Key words and phrases: $h\text{-stability},\ t_{\infty}\text{-similarity},\ \text{nonlinear nonautonomous}$ system.

We recall some notions of h-stability [11].

DEFINITION 1.1. The system (1.1) (the zero solution x=0 of (1.1)) is called h-stable (hS) if there exist $c \geq 1$, $\delta > 0$, and a positive bounded continuous function h on \mathbb{R}^+ such that

$$|x(t)| \le c |x_0| h(t) h(t_0)^{-1}$$

for $t \ge t_0 \ge 0$ and $|x_0| < \delta$, and is called *h*-stable in variation (hSV) if (1.3) (or z = 0 of (1.3)) is h-stable.

The notion of h-stability (hS) was introduced by Pinto [11, 12] with the intention of obtaining results about stability for a weakly stable system (at least, weaker than those given exponential asymptotic stability) under some perturbations. That is, Pinto extended the study of exponential asymptotic stability to a variety of reasonable systems called h-systems.

Choi et al. studied the important properties about hS for the various differential systems [3] and for hS of nonlinear differential systems via t_{∞} -similarity [4].

Goo et al. investigated hS for the nonlinear Volterra integro-differential system [8] and for the linear perturbed Volterra integro-differential systems [7].

Let \mathcal{M} denote the set of all $n \times n$ continuous matrices A(t) defined on \mathbb{R}^+ and \mathcal{N} be the subset of \mathcal{M} consisting of those nonsingular matrices S(t) that are of class C^1 with the property that S(t) and $S^{-1}(t)$ are bounded. The notion of t_{∞} -similarity in \mathcal{M} was introduced by Conti [5].

DEFINITION 1.2. A matrix $A(t) \in \mathcal{M}$ is t_{∞} -similar to a matrix $B(t) \in \mathcal{M}$ if there exists an $n \times n$ matrix F(t) absolutely integrable over \mathbb{R}^+ , i.e.,

$$\int_0^\infty |F(t)|dt < \infty$$

such that

$$\dot{S}(t) + S(t)B(t) - A(t)S(t) = F(t)$$

for some $S(t) \in \mathcal{N}$.

The notion of t_{∞} -similarity is an equivalence relation in the set of all $n \times n$ continuous matrices on \mathbb{R}^+ , and it preserves some stability concepts [5, 9].

In this paper, we investigate h-stability of the nonlinear differential systems using the notion of t_{∞} -similarity.

We give some related properties that we need in the sequal.

Lemma 1.3. [12] The linear system

$$(1.5) x' = A(t)x, \ x(t_0) = x_0,$$

where A(t) is an $n \times n$ continuous matrix, is hS if and only if there exist $c \geq 1$ and a positive bounded continuous function h defined on \mathbb{R}^+ such that

$$|\phi(t, t_0)| \le c h(t) h(t_0)^{-1}$$

for $t \ge t_0 \ge 0$, where $\phi(t, t_0)$ is a fundamental matrix of (1.5).

We need Alekseev formula to compare between the solutions of (1.1) and the solutions of perturbed nonlinear system

$$(1.7) y' = f(t,y) + g(t,y), \ y(t_0) = y_0,$$

where $g \in C(\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n)$. Let $y(t) = y(t, t_0, y_0)$ denote the solution of (1.7) passing through the point (t_0, y_0) in $\mathbb{R}^+ \times \mathbb{R}^n$.

The following is a generalization to nonlinear system of the variation of constants formula due to Alekseev [1].

LEMMA 1.4. If $y_0 \in \mathbb{R}^n$, then for all t such that $x(t, t_0, y_0) \in \mathbb{R}^n$,

$$y(t, t_0, y_0) = x(t, t_0, y_0) + \int_{t_0}^t \Phi(t, s, y(s)) g(s, y(s)) ds.$$

THEOREM 1.5. [3] If the zero solution of (1.1) is hS, then the zero solution of (1.2) is hS.

THEOREM 1.6. [4] Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \geq t_0 \geq 0$ and $|x_0| \leq \delta$ for some constant $\delta > 0$. If the solution v = 0 of (1.2) is hS, then the solution z = 0 of (1.3) is hS.

THEOREM 1.7. [10] Let $f \in C(\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n)$, and $f_x = \partial f/\partial x$ exist and be continuous on $\mathbb{R}^n \times \mathbb{R}^n$. Assume that $x(t, t_0, x_0)$ and $x(t, t_0, y_0)$ are any two solutions of (1.1) through (t_0, x_0) and (t_0, y_0) , respectively, existing for $t \geq t_0$, such that x_0, y_0 belong to a convex subset of \mathbb{R}^n .

$$x(t,t_0,x_0) - x(t,t_0,y_0) = \left[\int_0^1 \Phi(t,t_0,sx_0 + (1-s)y_0)ds) \right] (x_0 - y_0).$$

hods for $t > t_0$.

We need to modify Theorem 3.6 in [3] into the following:

THEOREM 1.8. Suppose that the solution x = 0 of (1.1) is hS with a nondecreasing function h and the perturbed term q in (1.7) satisfies

$$|\Phi(t,s,z)g(t,z)| \le \gamma(s)|z|, t \ge t_0 \ge 0,$$

where $\gamma \in C(\mathbb{R}^+, \mathbb{R}^+)$ with $\int_{t_0}^{\infty} \gamma(s) ds < \infty$. Then y = 0 of (1.7) is hS.

Proof. Let $x(t) = x(t, t_0, y_0)$ and $y(t) = y(t, t_0, y_0)$ be solutions of (1.1) and (1.7), respectively. By Lemma 1.4, we obtain

$$|y(t)| \le |x(t)| + \int_{t_0}^t |\Phi(t, s, y(s))g(s, y(s))| ds$$

$$\le c|y_0|h(t)h(t_0)^{-1} + \int_{t_0}^t \gamma(s)|y(s)| ds.$$

Thus, it follows from the Gronwall inequality that we have

$$|y(t)| \le c|y_0|h(t)h(t_0)^{-1}\exp(\int_{t_0}^t \gamma(s)ds)$$

 $\le c_1|y_0|h(t)h(t_0)^{-1}, t \ge t_0,$

where $c_1 = c \exp(\int_{t_0}^{\infty} \gamma(s) ds)$. This implies that y = 0 of (1.7) is hS.

2. Main Results

In this section, we investigate hS for the nonlinear differential systems via t_{∞} -similarity.

THEOREM 2.1. Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \geq t_0 \geq 0$ and $|x_0| \leq \delta$ for some constant $\delta > 0$. Then the solution v = 0 of (1.2) is hS if and only if the solution z = 0 of (1.3) is hS.

Proof. First, suppose v = 0 of (1.2) is hS. Then by Theorem 1.6, the solution z = 0 of (1.3) is hS.

Conversely, suppose the solution z=0 of (1.3) is hS. Let $x(t)=x(t,t_0,x_0)$ be any solution of (2.1). Then by Theorem 1.7, we have

$$x(t, t_0, x_0) = \left[\int_0^1 \Phi(t, t_0, sx_0) ds \right] x_0.$$

By Lemma 1.3, since the solution z = 0 of (1.3) is hS, there exist $c \ge 1$ and a positive bounded continuous function h on \mathbb{R}^+ such that

$$|\Phi(t, t_0, x_0)| \le c h(t) h(t_0)^{-1}$$

for $t \ge t_0 \ge 0$, where $\Phi(t, t_0, x_0)$ is a fundamental matrix of (1.3). From (1.6), we have

$$|x(t,t_0,x_0)| \le \int_0^1 |\Phi(t,t_0,sx_0)| \, ds \, |x_0| \le c \, |x_0| \, h(t) \, h(t_0)^{-1}.$$

This implies that the zero solution of (1.1) is hS. Therefore, by Theorem 1.5, the solution v = 0 of (1.2) is hS and so the proof is complete.

COROLLARY 2.2. Under the same conditions of Theorem 2.1, the zero solution of (1.1) is hSV.

COROLLARY 2.3. Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \geq t_0 \geq 0$ and $|x_0| \leq \delta$ for some constant $\delta > 0$ and the solution z = 0 of (1.3) is hS with a nondecreasing function h. Also, suppose that for all $t \geq t_0 \geq 0$,

$$|\Phi(t, s, z) g(t, z)| \le \gamma(s)|z|,$$

where $\gamma \in C(\mathbb{R}^+, \mathbb{R}^+)$ and $\int_{t_0}^{\infty} \gamma(s) ds < \infty$. Then y = 0 of (1.7) is hS.

Proof. It follows from Theorem 2.1 that the solution v = 0 of (1.2) is hS. In the proof of Theorem 2.1, the solution x = 0 of (1.1) is hS. Hence, by Theorem 1.8, the solution y = 0 of (1.7) is hS. This completes the proof.

Also, we examine the property of hS for the perturbed system

(2.1)
$$y' = f(t,y) + \int_{t_0}^t g(s,y(s))ds, \ y(t_0) = y_0,$$

where $g \in C(\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n)$ and g(t, 0) = 0.

LEMMA 2.4. Let $u, p, q \in C(\mathbb{R}^+, \mathbb{R}^+)$ and suppose that, for some $c \geq 0$, we have

(2.2)
$$u(t) \le c + \int_{t_0}^t p(s) \int_{t_0}^s q(\tau) u(\tau) d\tau ds, \ t \ge t_0.$$

Then

(2.3)
$$u(t) \le c \exp(\int_{t_0}^t p(s) \int_{t_0}^s q(\tau) d\tau ds), \ t \ge t_0.$$

Proof. Setting $v(t) = c + \int_{t_0}^t p(s) \int_{t_0}^s q(\tau)u(\tau)d\tau ds$, we have $v(t_0) = c$ and

(2.4)
$$v'(t) = p(t) \int_{t_0}^t q(s)u(s)ds \le p(t) \int_{t_0}^t q(s)v(s)ds \\ \le [p(t) \int_{t_0}^t q(s)ds]v(t), \ t \ge t_0,$$

since v(t) is nondecreasing and $u(t) \leq v(t)$. It follows from the Gronwall inequality that (2.4) yields the estimate (2.3).

THEOREM 2.5. Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \geq t_0 \geq 0$ and $|x_0| \leq \delta$ for some constant $\delta > 0$. If the solution x = 0 of (1.1) is hS with a positive bounded continuous function h and g in (2.1) satisfies

$$|g(t,y)| \le \lambda(t)|y|, \ t \ge t_0, \ y \in \mathbb{R}^n,$$

where $\lambda: \mathbb{R}^+ \to \mathbb{R}^+$ is continuous with

(2.5)
$$\int_{t_0}^{\infty} \frac{1}{h(s)} \int_{t_0}^{s} h(\tau) \lambda(\tau) d\tau ds < \infty,$$

for all $t_0 \ge 0$, then the solution y = 0 of (2.1) is hS.

Proof. Let $x(t) = x(t, t_0, x_0)$ and $y(t) = y(t, t_0, x_0)$. By Theorem 1.5, since the solution x = 0 of (1.1) is hS, the solution v = 0 of (1.2) is hS. Therefore, by Theorem 2.1, the solution z = 0 of (1.3) is hS. By Lemma 1.4, we have

$$|y(t)| \le |x(t)| + \int_{t_0}^t |\Phi(t, s, y(s))| \int_{t_0}^s |g(\tau, y(\tau))| d\tau ds$$

$$\le c_1 |y_0| h(t) h(t_0)^{-1} + \int_{t_0}^t c_2 \frac{h(t)}{h(s)} \int_{t_0}^s h(\tau) \lambda(\tau) \frac{|y(\tau)|}{h(\tau)} d\tau ds.$$

Setting $u(t) = |y(t)|h(t)^{-1}$ and using Lemma 2.4, we obtain

$$|y(t)| \le c_1 |y_0| h(t) h(t_0)^{-1} e^{c_2 \int_{t_0}^t \frac{1}{h(s)} \int_{t_0}^s h(\tau) \lambda(\tau) d\tau ds}$$

$$\le c |y_0| h(t) h(t_0)^{-1}, \ t \ge t_0,$$

where $c = c_1 e^{c_2 \int_{t_0}^{\infty} \frac{1}{h(s)} \int_{t_0}^{s} h(\tau) \lambda(\tau) d\tau ds}$. It follows that y = 0 of (2.1) is hS. Hence, the proof is complete.

Remark 2.1. We further suppose that h is nondecreasing in Theorem 2.5, then the condition (2.5) can be replaced by

(2.6)
$$\int_{t_0}^{\infty} \int_{t_0}^{s} \lambda(\tau) d\tau ds < \infty,$$

for all $t_0 \geq 0$.

COROLLARY 2.6. Under the assumptions of Theorem 2.5, we suppose furthermore that the condition (2.5) is replace by (2.6) and $\frac{h(s)}{h(t)}$ is bounded for for each $t \geq s \geq 0$. Then the solution y = 0 of (2.1) is hS.

Acknowledgments

The author is very grateful for the referee's valuable comments.

References

- [1] F. Brauer, Perturbations of nonlinear systems of differential equations II, J. Math. Anal. Appl. 17 (1967), 579–591.
- [2] S. K. Choi and N. J. Koo, h-stability for nonlinear perturbed systems, Ann. of Diff. Eqs. 11 (1995), 1–9.
- [3] S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica 21 (1993), 245–262.
- [4] S. K. Choi and N. J. Koo and H. S. Ryu, h-stability of differential systems via t_{∞} -similarity, Bull. Korean. Math. Soc. **34** (1997), 371–383.
- [5] R. Conti, Sulla t_∞-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43–47.
- [6] S. Elaydi and R. R. M. Rao, Lipschitz stability for nonlinear Volterra integrodifferential systems, Appl. Math. Computations 27 (1988), 191–199.
- Y. H. Goo and D. H. Ry, h-stability for perturbed integro-differential systems,
 J. Chungcheong Math. Soc. 21 (2008), 511–517.
- [8] Y. H. Goo, M. H. Ji and D. H. Ry, h-stability in certain integro-differential equations, J. Chungcheong Math. Soc. 22 (2009), 81–88.
- [9] G. A. Hewer, Stability properties of the equation by t_{∞} -similarity, J. Math. Anal. Appl. 41 (1973), 336–344.
- [10] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol. I, Academic Press, New York and London, 1969.
- [11] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161–175.
- [12] M. Pinto, Stability of nonlinear differential systems, Applicable Analysis 43 (1992), 1–20.
- [13] M. R. M. Rao and P. Srinivas, Asymptotic behavior of solutions of Volterra integro-differential equations, Proc. Amer. Math. Soc. 94 (1985), 55–60.

*

Department of Mathematics Hanseo University Seosan 356-706, Republic of Korea *E-mail*: yhgoo@hanseo.ac.kr