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h-STABILITY OF THE NONLINEAR DIFFERENTIAL
SYSTEMS VIA t∞-SIMILARITY

Yoon Hoe Goo*

Abstract. In this paper, we investigate h-stability of the nonlin-
ear differential systems using the notion of t∞-similarity.

1. Introduction and basic facts

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(1.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and
is continuous on Rn × Rn and f(t, 0) = 0. For x ∈ Rn, let |x| =
(
∑n

j=1 x2
j )

1/2. For an n × n matrix A, define the norm |A| of A by
|A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (1.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.3)

The fundamental matrix Φ(t, t0, x0) of (1.3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.2).
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We recall some notions of h-stability [11].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called h-stable (hS) if there exist c ≥ 1, δ > 0, and a positive bounded
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| < δ, and is called h-stable in variation (hSV) if
(1.3) (or z = 0 of (1.3)) is h-stable.

The notion of h-stability (hS) was introduced by Pinto [11, 12] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems.

Choi et al. studied the important properties about hS for the various
differential systems [3] and for hS of nonlinear differential systems via
t∞-similarity [4].

Goo et al. investigated hS for the nonlinear Volterra integro-differential
system [8] and for the linear perturbed Volterra integro-differential sys-
tems [7].

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[5].

Definition 1.2. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(1.4)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [5, 9].

In this paper, we investigate h-stability of the nonlinear differential
systems using the notion of t∞-similarity.
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We give some related properties that we need in the sequal.

Lemma 1.3. [12] The linear system

x′ = A(t)x, x(t0) = x0,(1.5)

where A(t) is an n×n continuous matrix, is hS if and only if there exist
c ≥ 1 and a positive bounded continuous function h defined on R+ such
that

|φ(t, t0)| ≤ c h(t) h(t0)−1(1.6)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (1.5).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.7)

where g ∈ C(R+×Rn,Rn). Let y(t) = y(t, t0, y0) denote the solution of
(1.7) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 1.4. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 1.5. [3] If the zero solution of (1.1) is hS, then the zero
solution of (1.2) is hS.

Theorem 1.6. [4] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (1.2) is hS, then the solution z = 0 of (1.3) is hS.

Theorem 1.7. [10] Let f ∈ C(R+ × Rn,Rn), and fx = ∂f/∂x exist
and be continuous on Rn × Rn. Assume that x(t, t0, x0) and x(t, t0, y0)
are any two solutions of (1.1) through (t0, x0) and (t0, y0), respectively,
existing for t ≥ t0, such that x0, y0 belong to a convex subset of Rn.
Then

x(t, t0, x0)− x(t, t0, y0) =
[ ∫ 1

0
Φ(t, t0, sx0 + (1− s)y0)ds)

]
(x0 − y0).

hods for t ≥ t0.

We need to modify Theorem 3.6 in [3] into the following:
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Theorem 1.8. Suppose that the solution x = 0 of (1.1) is hS with a
nondecreasing function h and the perturbed term g in (1.7) satisfies

|Φ(t, s, z)g(t, z)| ≤ γ(s)|z|, t ≥ t0 ≥ 0,

where γ ∈ C(R+,R+) with
∫∞
t0

γ(s)ds < ∞. Then y = 0 of (1.7) is hS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.7), respectively. By Lemma 1.4, we obtain

|y(t) ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))g(s, y(s))|ds

≤ c|y0|h(t)h(t0)−1 +
∫ t

t0

γ(s)|y(s)|ds.

Thus, it follows from the Gronwall inequality that we have

|y(t)| ≤ c|y0|h(t)h(t0)−1 exp(
∫ t

t0

γ(s)ds)

≤ c1|y0|h(t)h(t0)−1, t ≥ t0,

where c1 = c exp(
∫∞
t0

γ(s)ds). This implies that y = 0 of (1.7) is hS.

2. Main Results

In this section, we investigate hS for the nonlinear differential systems
via t∞-similarity.

Theorem 2.1. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. Then the solution
v = 0 of (1.2) is hS if and only if the solution z = 0 of (1.3) is hS.

Proof. First, suppose v = 0 of (1.2) is hS. Then by Theorem 1.6, the
solution z = 0 of (1.3) is hS.

Conversely, suppose the solution z = 0 of (1.3) is hS. Let x(t) =
x(t, t0, x0) be any solution of (2.1). Then by Theorem 1.7, we have

x(t, t0, x0) =
[ ∫ 1

0
Φ(t, t0, sx0)ds

]
x0.

By Lemma 1.3, since the solution z = 0 of (1.3) is hS, there exist c ≥ 1
and a positive bounded continuous function h on R+ such that

|Φ(t, t0, x0)| ≤ c h(t) h(t0)−1
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for t ≥ t0 ≥ 0, where Φ(t, t0, x0) is a fundamental matrix of (1.3). From
(1.6), we have

|x(t, t0, x0)| ≤
∫ 1

0
|Φ(t, t0, sx0)| ds |x0| ≤ c |x0|h(t)h(t0)−1.

This implies that the zero solution of (1.1) is hS. Therefore, by Theorem
1.5, the solution v = 0 of (1.2) is hS and so the proof is complete.

Corollary 2.2. Under the same conditions of Theorem 2.1, the zero
solution of (1.1) is hSV.

Corollary 2.3. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0 and the solution
z = 0 of (1.3) is hS with a nondecreasing function h. Also, suppose that
for all t ≥ t0 ≥ 0,

|Φ(t, s, z) g(t, z)| ≤ γ(s)|z|,
where γ ∈ C(R+,R+) and

∫∞
t0

γ(s)ds < ∞. Then y = 0 of (1.7) is hS.

Proof. It follows from Theorem 2.1 that the solution v = 0 of (1.2) is
hS. In the proof of Theorem 2.1, the solution x = 0 of (1.1) is hS. Hence,
by Theorem 1.8, the solution y = 0 of (1.7) is hS. This completes the
proof.

Also, we examine the property of hS for the perturbed system

(2.1) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0.

Lemma 2.4. Let u, p, q ∈ C(R+,R+) and suppose that, for some
c ≥ 0, we have

(2.2) u(t) ≤ c +
∫ t

t0

p(s)
∫ s

t0

q(τ)u(τ)dτds, t ≥ t0.

Then

(2.3) u(t) ≤ c exp(
∫ t

t0

p(s)
∫ s

t0

q(τ)dτds), t ≥ t0.
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Proof. Setting v(t) = c +
∫ t
t0

p(s)
∫ s
t0

q(τ)u(τ)dτds, we have v(t0) = c
and

(2.4)
v′(t) = p(t)

∫ t

t0

q(s)u(s)ds ≤ p(t)
∫ t

t0

q(s)v(s)ds

≤ [p(t)
∫ t

t0

q(s)ds]v(t), t ≥ t0,

since v(t) is nondecreasing and u(t) ≤ v(t). It follows from the Gronwall
inequality that (2.4) yields the estimate (2.3).

Theorem 2.5. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
x = 0 of (1.1) is hS with a positive bounded continuous function h and
g in (2.1) satisfies

|g(t, y)| ≤ λ(t)|y|, t ≥ t0, y ∈ Rn,

where λ : R+ → R+ is continuous with

(2.5)
∫ ∞

t0

1
h(s)

∫ s

t0

h(τ)λ(τ)dτds < ∞,

for all t0 ≥ 0, then the solution y = 0 of (2.1) is hS.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Theorem 1.5,
since the solution x = 0 of (1.1) is hS, the solution v = 0 of (1.2) is hS.
Therefore, by Theorem 2.1, the solution z = 0 of (1.3) is hS. By Lemma
1.4, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2
h(t)
h(s)

∫ s

t0

h(τ)λ(τ)
|y(τ)|
h(τ)

dτds.

Setting u(t) = |y(t)|h(t)−1 and using Lemma 2.4, we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1e
c2

∫ t
t0

1
h(s)

∫ s
t0

h(τ)λ(τ)dτds

≤ c|y0|h(t) h(t0)−1, t ≥ t0,

where c = c1e
c2

∫∞
t0

1
h(s)

∫ s
t0

h(τ)λ(τ)dτds. It follows that y = 0 of (2.1) is hS.
Hence, the proof is complete.

Remark 2.1. We further suppose that h is nondecreasing in Theorem
2.5, then the condition (2.5) can be replaced by

(2.6)
∫ ∞

t0

∫ s

t0

λ(τ)dτds < ∞,
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for all t0 ≥ 0.

Corollary 2.6. Under the assumptions of Theorem 2.5, we sup-

pose furthermore that the condition (2.5) is replace by (2.6) and h(s)
h(t) is

bounded for for each t ≥ s ≥ 0. Then the solution y = 0 of (2.1) is hS.
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