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h-STABILITY OF THE NONLINEAR DIFFERENTIAL
SYSTEMS VIA t,-SIMILARITY

YooN Hoe Goo*

ABSTRACT. In this paper, we investigate h-stability of the nonlin-
ear differential systems using the notion of ts-similarity.

1. Introduction and basic facts

We consider the nonlinear nonautonomous differential system

(11) wl(t) = f(ta .%'(t)), x(tO) = Zo,
where f € C(RT x R",R"), RT = [0,00) and R" is the Euclidean n-
space. We assume that the Jacobian matrix f, = 0f/0z exists and
is continuous on R™ x R™ and f(¢,0) = 0. For =z € R", let |z|] =
(5o x?)l/z. For an m x n matrix A, define the norm |A| of A by
|A] = supj,<; |Az].

Let x(t,to, o) denote the unique solution of (1.1) with x(to, tg, zo) =
x0, existing on [tg, 00). Then we can consider the associated variational
systems around the zero solution of (1.1) and around z(t), respectively,

(1.2) V' (t) = fo(t,0)v(t), v(to) = vo
and
(1.3) 2(t) = fo(t,z(t, o, m0))2(t), 2(ty) = 0.

The fundamental matrix ®(¢,¢p, zo) of (1.3) is given by
0
D(t,t = —ux(t, ¢
(t, to, z0) 8x0$(7 05 %0),

and ®(t,10,0) is the fundamental matrix of (1.2).
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We recall some notions of h-stability [11].

DEFINITION 1.1. The system (1.1) (the zero solution z = 0 of (1.1))
is called h-stable (hS) if there exist ¢ > 1, § > 0, and a positive bounded
continuous function h on R such that

[2(t)] < ¢lwo| A(t) h(to) ™

for t > to > 0 and |zg| < 6, and is called h-stable in variation (hSV) if
(1.3) (or z =0 of (1.3)) is h-stable.

The notion of h-stability (hS) was introduced by Pinto [11, 12] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems.

Choi et al. studied the important properties about hS for the various
differential systems [3] and for hS of nonlinear differential systems via
to-similarity [4].

Goo et al. investigated hS for the nonlinear Volterra integro-differential
system [8] and for the linear perturbed Volterra integro-differential sys-
tems [7].

Let M denote the set of all n x n continuous matrices A(t) defined on
R* and A be the subset of M consisting of those nonsingular matrices
S(t) that are of class C! with the property that S(t) and S~1(t) are
bounded. The notion of ty-similarity in M was introduced by Conti

[5].

DEFINITION 1.2. A matrix A(t) € M is to-similar to a matrix B(t) €
M if there exists an n X n matrix F(t) absolutely integrable over R,
i.e.,

/ |F(t)]|dt < oo
such that ’
(1.4) S(t) + S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € N.

The notion of t,-similarity is an equivalence relation in the set of
all n x n continuous matrices on R*, and it preserves some stability
concepts [5, 9].

In this paper, we investigate h-stability of the nonlinear differential
systems using the notion of t,.-similarity.
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We give some related properties that we need in the sequal.

LEMMA 1.3. [12] The linear system
(1.5) a’ = A(t)z, x(to) = o,

where A(t) is an n X n continuous matrix, is h.S if and only if there exist
¢ > 1 and a positive bounded continuous function h defined on R™ such
that

(1.6) |6(t, to)| < ch(t) lto) ™"
for t > to > 0, where ¢(t,to) is a fundamental matrix of (1.5).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

(1.7) y' = f(t,y) +9(t,y), y(to) = yo,
where g € C(RT x R™",R"™). Let y(t) = y(¢, o, yo) denote the solution of
(1.7) passing through the point (tg,70) in RT x R™.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

LEMMA 1.4. If yg € R™, then for all t such that z(t,to,yo) € R",

t
y(ta t07 yO) = CC(t, tO) yO) + / (b(tv S, y(S)) 9(57 y(S)) ds.
to
THEOREM 1.5. [3] If the zero solution of (1.1) is hS, then the zero
solution of (1.2) is hS.

THEOREM 1.6. [4] Suppose that f,(t,0) is too-similar to f(t, z(t,to, z0))
for t > ty > 0 and |zg| < ¢ for some constant 6 > 0. If the solution
v =0 of (1.2) is hS, then the solution z = 0 of (1.3) is hS.

THEOREM 1.7. [10] Let f € C(RT x R",R"), and f, = 0f/0x exist
and be continuous on R™ x R™. Assume that x(t,ty, xo) and x(t,to,yo)
are any two solutions of (1.1) through (to,xo) and (to,yo), respectively,
existing for t > tg, such that xg, yo belong to a convex subset of R™.
Then

1
z(t, to, xo) — x(t,to, yo) = [/o D(t, to, swo + (1 — s)yo)ds) | (zo — Yo).

hods for t > ty.

We need to modify Theorem 3.6 in [3] into the following:
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THEOREM 1.8. Suppose that the solution z = 0 of (1.1) is hS with a
nondecreasing function h and the perturbed term g in (1.7) satisfies
(2,5, 2)g(t, 2)| <(s)lzl, £ = t0 =0,
where v € C(R*,R™") with j;zo v(s)ds < co. Then y =0 of (1.7) is hS.

Proof. Let x(t) = x(t,to,yo) and y(t) = y(¢,to,y0) be solutions of
(1.1) and (1.7), respectively. By Lemma 1.4, we obtain

ly@) < Jz()|+ t [®(t,5,9(s))g(s,y(s))|ds

< clyolh(t)h(to) ™ + / (5 y(s)ds.

Thus, it follows from the Gronwall inequality that we have

W®)] < clyolh(t)h(to) " exp( / +(s)ds)
é Cl|y0|h(t)h(t0)_17 t Z tOv

where ¢1 = cexp( [>"v(s)ds). This implies that y = 0 of (1.7) is hS. [

2. Main Results

In this section, we investigate hS for the nonlinear differential systems
via too-similarity.

THEOREM 2.1. Suppose that f,(t,0) is too-similar to f.(t,xz(t,to, o))
for t >ty > 0 and |xg| < § for some constant 6 > 0. Then the solution
v =0 of (1.2) is hS if and only if the solution z = 0 of (1.3) is hS.

Proof. First, suppose v = 0 of (1.2) is hS. Then by Theorem 1.6, the
solution z = 0 of (1.3) is hS.

Conversely, suppose the solution z = 0 of (1.3) is hS. Let z(¢t) =
x(t, to, o) be any solution of (2.1). Then by Theorem 1.7, we have

1
x(t>t07x0) = |:/ (I)(t7t0>3x0)d8:| Zo-
0

By Lemma 1.3, since the solution z = 0 of (1.3) is hS, there exist ¢ > 1
and a positive bounded continuous function A on R* such that

|®(t, to, z0)| < ch(t) h(te) ™
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for t > tp > 0, where ®(¢,tp, xo) is a fundamental matrix of (1.3). From
(1.6), we have

1
|z (t, to, xo)| < / |D(t,to, szo)| ds |zo| < c|xo|h(t) h(to)_l.
0

This implies that the zero solution of (1.1) is hS. Therefore, by Theorem
1.5, the solution v = 0 of (1.2) is hS and so the proof is complete. [

COROLLARY 2.2. Under the same conditions of Theorem 2.1, the zero
solution of (1.1) is hSV.

COROLLARY 2.3. Suppose that f;(t,0) is too-similar to f,(t, xz(t, o, x0))
for t > tg > 0 and |xg| < § for some constant 6 > 0 and the solution
z =0 of (1.3) is hS with a nondecreasing function h. Also, suppose that
forallt >ty >0,

[©(t,5,2) g(t, 2)| < 7(s)lzl,

where v € C(RT,R™") and j;zo v(s)ds < co. Then y =0 of (1.7) is hS.
Proof. 1t follows from Theorem 2.1 that the solution v = 0 of (1.2) is
hS. In the proof of Theorem 2.1, the solution z = 0 of (1.1) is hS. Hence,

by Theorem 1.8, the solution y = 0 of (1.7) is hS. This completes the
proof. O

Also, we examine the property of hS for the perturbed system

t

(2.1) y = f(ty) + / 9(s,y(s))ds, y(to) = yo.
to

where g € C(RT x R", R"™) and g(¢,0) = 0.

LEMMA 2.4. Let u,p,q € C(RY,R") and suppose that, for some
c > 0, we have

(2.2) u(t) < o+ /t p(s) /t T y(Pu(r)drds, > to.
Then
(2.3) u(t) < cexp( /t p(s) /t T y(Pydrds), ¢ > 1.
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Proof. Setting v(t) = ¢+ ft'; p(s) ftz q(7)u(7)drds, we have v(ty) = ¢
and
t

t
V(0 =p) [ a(sul)ds <pl0) [ als)ots)as
(2.4) o fo
<) | adslott), ¢ to,
to
since v(t) is nondecreasing and u(t) < v(t). It follows from the Gronwall
inequality that (2.4) yields the estimate (2.3). O

THEOREM 2.5. Suppose that f;(t,0) is too-similar to fz(t, z(t,t0,z0))
for t > ty > 0 and |zg| < & for some constant 6 > 0. If the solution
x =0 of (1.1) is hS with a positive bounded continuous function h and
g in (2.1) satisfies

l9(t:9)l < AB)lyl, ¢ > to, y € R™,

where A : R™ — R™ is continuous with
o 1 S
2.5 / /hT)\Tdes<oo,
(25) i [ o)
for all ty > 0, then the solution y = 0 of (2.1) is hS.
Proof. Let x(t) = x(t,to, o) and y(t) = y(t, to, zp). By Theorem 1.5,
since the solution z = 0 of (1.1) is hS, the solution v = 0 of (1.2) is hS.

Therefore, by Theorem 2.1, the solution z = 0 of (1.3) is hS. By Lemma
1.4, we have

t s
01 < o)+ | [0(t 9] [ loru(r)ldrds
< cilmlne) o)+ [ xS [ ¥ drds,

Setting u(t) = |y(t)|h(t)~! and using Lemma 2.4, we obtain

5] < erlyol() h(to) e o 7 ig MON s
< clyolh(t) h(to) ™", t > to,

where ¢ = ¢1e™ Jig wey Sy MOADdTds 1 follows that y =0 of (2.1) is hS.

Hence, the proof is complete. O

REMARK 2.1. We further suppose that h is nondecreasing in Theorem
2.5, then the condition (2.5) can be replaced by

(2.6) / A(T)drds < o0,
to to
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for all t5 > 0.

COROLLARY 2.6. Under the assumptions of Theorem 2.5, we sup-

pose furthermore that the condition (2.5) is replace by (2.6) and Z%‘g is

bounded for for each t > s > 0. Then the solution y = 0 of (2.1) is hS.
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