• Title/Summary/Keyword: nonlinear matrix equations

Search Result 140, Processing Time 0.028 seconds

Design of Fuzzy Model Based Controller for Uncertain Nonlinear Systems

  • Wook Chang;Joo, Young-Hoon;Park, Jin-Bae;Guanrong Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.185-189
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers, this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. The stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. Furthermore, the proposed method can be applied to partially known uncertain nonlinear systems. A numerical simulation is performed for the control of an inverted pendulum, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

An Improved Poincaré-like Carleman Linearization Approach for Power System Nonlinear Analysis

  • Wang, Zhou-Qiang;Huang, Qi;Zhang, Chang-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.271-281
    • /
    • 2013
  • In order to improve the performance of analysis, it is important to consider the nonlinearity in power system. The Carleman embedding technique (linearization procedure) provides an effective approach in reduction of nonlinear systems. In the approach, a group of differential equations in which the state variables are formed by the original state variables and the vector monomials one can build with products of positive integer powers of them, is constructed. In traditional Carleman linearization technique, the tensor matrix is truncated to form a square matrix, and then regular linear system theory is used to solve the truncated system directly. However, it is found that part of nonlinear information is neglected when truncating the Carleman model. This paper proposes a new approach to solve the problem, by combining the Poincar$\acute{e}$ transformation with the Carleman linearization. Case studies are presented to verify the proposed method. Modal analysis shows that, with traditional Carleman linearization, the calculated contribution factors are not symmetrical, while such problems are avoided in the improved approach.

Dynamic Modeling of 2 DOF Parallel Manipulator (2 자유도 병렬 메니퓰레이터의 동적 모델링)

  • Lee, Jong Gyu;Lee, Sang Ryong;Lee, Choon Young;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.897-904
    • /
    • 2014
  • In this paper, two-DOF parallel manipulator has the sliders which execute a linear reciprocating motion depending on parallel guides and the end-effector which can be adjusted arbitrarily. To investigate the dynamic characteristics of the manipulator, the dynamic performance index is used. The index is able to be obtained by the relation between the Jacobian matrix and the inertia matrix. The kinematic and the dynamic analysis find these matrices. Also, the dynamic model of the manipulator is derived from the Lagrange formula. This model represents complicated nonlinear equations of motion. With the simulation results of the dynamic characteristic of the manipulator, we find that the dynamic performance index is based on the selection of the ranges for the continuous movement of the manipulator and the dynamic model derived can be used to the control algorithm development of the manipulator.

FINDING THE SKEW-SYMMETRIC SOLVENT TO A QUADRATIC MATRIX EQUATION

  • Han, Yin-Huan;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.587-595
    • /
    • 2012
  • In this paper we consider the quadratic matrix equation which can be defined be $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix; A,B and C are $n{\times}n$ given matrices with real elements. Newton's method is considered to find the skew-symmetric solvent of the nonlinear matrix equations Q(X). We also show that the method converges the skew-symmetric solvent even if the Fr$\acute{e}$chet derivative is singular. Finally, we give some numerical examples.

SOLVING MATRIX POLYNOMIALS BY NEWTON'S METHOD WITH EXACT LINE SEARCHES

  • Seo, Jong-Hyeon;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.55-68
    • /
    • 2008
  • One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form $P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m$, where $A_0$, $A_1$, ${\cdots}$, $A_m$ and X are $n{\times}n$ complex matrices. Newton's method was introduced a useful tool for solving the equation P(X)=0. Here, we suggest an improved approach to solve each Newton step and consider how to incorporate line searches into Newton's method for solving the matrix polynomial. Finally, we give some numerical experiment to show that line searches reduce the number of iterations for convergence.

  • PDF

Solving a Matrix Polynomial by Conjugate Gradient Methods

  • Ko, Hyun-Ji;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.39-46
    • /
    • 2007
  • One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form G(X)=$A_0X^m+A_1X^{m-1}+{\cdots}+A_m$ where $A_0$, $A_1$, ${\cdots}$, $A_m$ and X are $n{\times}n$ real matrices. We show how the minimization methods can be used to solve the matrix polynomial G(X) and give some numerical experiments. We also compare Polak and Ribi$\acute{e}$re version and Fletcher and Reeves version of conjugate gradient method.

  • PDF

ON THE GENERAL DECAY STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

  • Meng, Xuejing;Yin, Baojian
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.515-536
    • /
    • 2012
  • This work focuses on the general decay stability of nonlinear stochastic differential equations with unbounded delay. A Razumikhin-type theorem is first established to obtain the moment stability but without almost sure stability. Then an improved edition is presented to derive not only the moment stability but also the almost sure stability, while existing Razumikhin-type theorems aim at only the moment stability. By virtue of the $M$-matrix techniques, we further develop the aforementioned Razumikhin-type theorems to be easily implementable. Two examples are given for illustration.

High precision integration for dynamic structural systems with holonomic constraints

  • Liu, Xiaojian;Begg, D.W.;Devane, M.A.;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.283-295
    • /
    • 1997
  • This paper presents a high precision integration method for the dynamic response analysis of structures with holonomic constraints. A detail recursive scheme suitable for algebraic and differential equations (ADEs) which incorporates generalized forces is established. The matrix exponential involved in the scheme is calculated precisely using $2^N$ algorithm. The Taylor expansions of the nonlinear term concerned with state variables of the structure and the generalized constraint forces of the ADEs are derived and consequently, their particular integrals are obtained. The accuracy and effectiveness of the present method is demonstrated by two numerical examples, a plane truss with circular slot at its tip point and a slewing flexible cantilever beam which is currently interesting in optimal control of robot manipulators.

Form-finding analysis of suspension bridges using an explicit Iterative approach

  • Cao, Hongyou;Zhou, Yun-Lai;Chen, Zhijun;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.85-95
    • /
    • 2017
  • This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing equations are derived for calculating the accurate unstrained lengths of the entire cable systems both the main cable and the hangers. And for the gradient-based iteration method, the derivation of explicit calculation for the Jacobian matrix while solving the nonlinear governing equation enhances the computational efficiency. The results from sensitivity analysis show well performance of the explicit Jacobian matrix compared with the traditional finite difference method. According to two numerical examples of long span suspension bridges studied, the proposed method is also compared with those reported approaches or the fundamental criterions in suspension bridge structural analysis, which eventually confirms the accuracy and efficiency of the proposed approach.