
J. KSIAM Vol.12, No.2, 55–68, 2008

SOLVING MATRIX POLYNOMIALS BY NEWTON’S METHOD
WITH EXACT LINE SEARCHES

JONG HYEON SEO1 AND HYUN-MIN KIM2†

1DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, SOUTH KOREA

E-mail address: hyeonni94@hanmail.net

2DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, SOUTH KOREA

E-mail address: hyunmin@pnu.edu

ABSTRACT. One of well known and much studied nonlinear matrix equations is the matrix
polynomial which has the form P (X) = A0X

m+A1X
m−1+· · ·+Am, where A0, A1, · · · , Am

and X are n × n complex matrices. Newton’s method was introduced a useful tool for solv-
ing the equation P (X) = 0. Here, we suggest an improved approach to solve each Newton
step and consider how to incorporate line searches into Newton’s method for solving the matrix
polynomial. Finally, we give some numerical experiment to show that line searches reduce the
number of iterations for convergence.

1. INTRODUCTION

Nonlinear matrix equations often occur in applications and modeling of scientific problems.
In this work we specially consider one of the nonlinear matrix equations which is called the
matrix polynomial. A matrix polynomial can be defined by

P (X) = A0X
m + A1X

m−1 + · · ·+ Am = 0, (1)

where A0, A1, · · · , Am, X ∈ Cn×n. If A0 = I where I is an n × n identity matrix, then we
say that P (X) is monic. Matrix polynomials appear in the theory of differential equations,
system theory, network theory, stochastic theory and other areas [8], [9], [10], [11]. A matrix
S satisfying the equation P (S) = 0 is called a solvent, or more precisely, a right solvent of
P (X) to distinguish it from a left solvent, which is a solution of the related matrix equation

XmA0 + Xm−1A1 + · · ·+ Am = 0.

In the quadratic case(m = 2), Davis [1], [2] considered Newton’s Method and Higham
and Kim [5], [6] incorporated the exact line searches into Newton’s method and developed
functional iterations. For solving matrix polynomials Newton’s method was considered by

2000 Mathematics Subject Classification. 65F30, 65H10.
Key words and phrases. matrix polynomial, solvent, Newton’s method, line searches.
† Corresponding author: This author was supported for two years by Pusan National University Research Grant.

55

56 J. H. SEO AND H.-M. KIM

Kratz and Stickel [7] and Berlloulli’s iteration was suggested by Dennis, Jr., Traub and Weber
[3], [4].

Much motivation for studying the matrix polynomial comes from the polynomial eigenvalue
problems

P (λ)v = (A0λ
m + A1λ

m−1 + · · ·+ Am)v = 0. (2)

If P (λ0) is singular, λ0 is called a polynomial eigenvalue and a vector v0 corresponding λ0

is called a polynomial eigenvector, or more precisely, a right polynomial eigenvector of P (λ)
to distinguish it from a left polynomial eigenvector, which is a vector corresponding λ0 of the
related equation

vT P (λ) = 0T .

In this work, we extend the existence theory of solvent of the quadratic matrix equation
which suggested by Xu and Lu [12] to the matrix polynomial (1) and improve Newton step us-
ing Schur decomposition. Also we show how to incorporate exact line searches into Newton’s
method for solving matrix polynomials.

2. THEORY

We deal primarily with the monic case for theoretical progress. First, we introduce the
conditions of existence of solvents by spectral data of a given the equation P (λ). The next
result show how solvents can be constructed from eigenpairs of the polynomial eigenvalue
problems.

Theorem 2.1. [3, Lem. 4.1] If a polynomial eigenvalue problem (2) has n linearly inde-
pendent eigenvectors, v1,v2, · · · ,vn corresponding to distinct eigenvalues λ1, λ2, · · · , λn,
then QΛQ−1 is a solvent to the matrix polynomial (1), where Q = [v1, · · · ,vn] and Λ =
diag(λ1, · · · , λn).

The following theorem gives information on the number of solvents of P (X).

Theorem 2.2. [6, Thm. 2.1] Suppose P (λ) in (2) has p distinct eigenvalues {λi}p
i=1, with

n ≤ p ≤ mn, and the corresponding set of p eigenvectors {vi}p
i=1 satisfies the Haar condition.

Then there are at least
(

p
n

)
different solvents of P (X), and exactly this many if p = mn, which

are given by
S = Qdiag(µi)Q−1, Q = [q1, · · · ,qn],

where the eigenpairs (µi,qi)n
i=1 are chosen from among the eigenpairs (λi,vi)

p
i=1 of P (λ).

However, the next example shows that even if we can find the spectral data for associated
polynomial eigenvalue problem it is not always possible to construct the solvent.

Example 2.3. Let

PM (X) ≡ X2 + X +
[−6 −5

0 −6

]
= 0.

Then, PM (X) = 0 has two solvents

SOLVING MATRIX POLYNOMIALS 57

[
2 1
0 2

]
,

[−3 −1
0 −3

]
.

But there is only one eigenvector associative with PM (λ)v = 0, namely (1, 0)T for λ = 2 or
λ = −3. Thus it is impossible to construct a solvent having the form Udaig{2,−3}U−1, since
the corresponding eigenvectors are not linearly independent.

Xu and Lu [12] provided an existence theorem of solvents to the equation AX2+BX+C =
0, where A = I , B and C are simultaneously triangularizable. We now extend these results
to obtain some information of solvents from the restricted matrix polynomials, and reify the
Theorem 2.1.

Theorem 2.4. Let P (X) = A0X
m + A1X

m−1 + · · · + Am be a matrix polynomial with
Ap = URpU

∗ for p = 0, 1, . . . , m. (U is unitary matrix and Rp’s are upper triangular
matrices). Then, if for i, j = 1, · · · , n, si,j is a solution of scalar coefficient polynomial
fi,j(t) =

∑m
p=0[Rp]ijtm−p and i > j implies that fj,j(si,i) 6= 0, then there exists a solvent S

of P (X) = 0 having a form of S = URU∗ for some upper triangular matrix R.

Proof. Define

N(X) ≡
m∑

p=0

RpX
m−p.

Then, we can easily verify that R is a solvent of N(X) = 0 implies that URU∗ is a solvent of
P (X) = 0. Therefore it is sufficient to prove that there exists a solvent of N(X) = 0.

For a associated polynomial eigenvalue problem N(λ),

det(N(λ)) =
n∏

j=1

fj,j(λ).

Thus the set of all solutions of fj,j(λ) = 0 for j = 1, · · · , n is also the that of eigenvalues of
N(λ). For each chosen eigenvalue λi = si,i (i = 1, 2, · · · , n), a right eigenvector xi can be
obtained by solving the system

N(λi)xi =

f1,1(λi) f1,2(λi) · · · × ×
0 f2,2(λi)

. . . × ×
0

. . .
...

. . . fn−2,n−1(λi) ×
fn−1,n−1(λi) ×

0 fn,n(λi)

x
(i)
1

x
(i)
2
...

x
(i)
i
...

x
(i)
n

=

0
0
...
0
...
0

.

Notice that f1,1(λi), · · · , fi−1,i−1(λi) are not zero by the hypothesis.
Since the matrix N(λi) is upper triangular matrix, we may find a solution of the system by

backward substitution. First put x
(i)
k = 0 for k = i + 1, · · · , n. (It is trivial solution of the k-th

58 J. H. SEO AND H.-M. KIM

linear equation. Next if k = i, then i-th linear equation has the form 0 · x(i)
i = 0. Since we can

choose x
(i)
i arbitrary, take x

(i)
i = 1 for convenience. At last if k < i, then we can easily get

x
(i)
k by solving the k-th linear equation, since fk(λi) 6= 0. Therefore for each i = 1, 2, · · · , n,

the eigenvector xi has the form

xi = [x(i)
1 x

(i)
2 · · · x

(i)
i−1 1 0 · · · 0] ,

where x
(i)
k (k = 1, 2, · · · , i− 1) is the solution of the linear equations such that

fk,k(λi) · x(i)
k = −(fk,k+1(λi) · x(i)

k+1 + · · · fk,n(λi) · x(i)
n).

The set of eigenvectors xi (i = 1, · · · , n) chosen by above method is linearly independent and
that makes us possible to construct a nonsingular vector matrix such that

Q =

x1 x2 x3 · · · xn

=

1 × × · · · ×
1 × · · · ×

1
. . . ×
. . .

...
1

.

By the Theorem 2.1, the upper triangular matrix R which is a solvent of N(X) = 0 can be
obtained by

R = Qdiag{λ1, λ2, · · · , λn}Q−1.

¤

The next corollary is directly induced.

Corollary 2.5. Let a matrix polynomial of which the coefficient matrices are all upper trian-
gular (or lower triangular) be given and the additional hypothesis of Theorem 2.4 hold. Then
there exists a solvent.

Now our attention may be moved to the numerical methods for solving matrix polynomials.

3. NEWTON’S METHOD

Newton’s method is the most well-known and powerful numerical method for solving non-
linear equations. For this reason it is a natural approach that we apply Newton’s method to solve
the matrix polynomial (1). Newton’s method for solving matrix polynomials was introduced
by Kratz and Stickel [7]. In this section we will suggest an improved Newton step computa-
tionally using the Schur decomposition and show how to incorporate exact line searches when
solving matrix polynomials by Newton’s method.

We now construct the iterative method which has second order converges. Consider the
nonlinear matrix equations

G(X) = 0, (3)

SOLVING MATRIX POLYNOMIALS 59

where G : Cn×n → Cn×n. Define Hk ∈ Cn×n as the solution of the linear equation G(Xk) +
G′(Xk)Hk = 0, where the linear operator G′(X)H : Cn×n → Cn×n is the Fréchet derivative
of G at X in the direction H . Then Newton’s method for the nonlinear matrix equation (3) can
be defined by

X0 given,

G(Xk) + G′(Xk)Hk = 0
Xk+1 = Xk + Hk

}
, k = 0, 1, 2, · · · .

Thus, each step of Newton’s method involves finding the solution H ∈ Cn×n of linear equation

G′(X)H = −G(X). (4)

For the matrix polynomial P (X) = 0 the equation (4) can be explicitly represented by

P ′(X)H = DX(H) =
m∑

i=1

m−i∑

j=0

AjX
m−(j+i)

 HX i−1

 = −P (X). (5)

We now have a natural question: when is the Fréchet derivative DX regular, both at a solvent
and an iterate, so that (5) has a unique solution? Unfortunately we do not have remarkable
condition. Kratz [7] answered the questions in specific case and presented the Newton method
to find solvents of the matrix polynomial (1) and proved that the algorithm converges quadrat-
ically near a simple solvent.

Finding the solvents of the matrix polynomials by Newton’s method can be regarded as
solving the linear equations (5). The general approach solving (5) is using vec function and
Kroneckor product.

Using vec operator vec(DX(H)) is represented by

vec(DX(H)) = vec(B1H + · · ·+ BmHXm−1)

= vec(B1HI) + · · ·+ vec(BmHXm−1)

= I ⊗B1vec(H) + · · · (XT)m−1 ⊗Bmvec(H)

= (I ⊗B1 + · · · (XT)m−1 ⊗Bm)vec(H)

=

(
m∑

i=1

(XT)i−1 ⊗Bi

)
vec(H)

=

m∑

i=1

(XT)i−1 ⊗

m−i∑

j=0

AjX
m−(j+i)

 vec(H)

= Dvec(H)

(6)

where

Bp = A0X
m−p + A1X

m−(p+1) + · · ·+ Ap, p = 1, 2, · · · ,m, (7)

60 J. H. SEO AND H.-M. KIM

and

D =
m∑

i=1

(XT)i−1 ⊗

m−i∑

j=0

AjX
m−(j+i)

 .

By the equality (6), the linear equation DX(H) = −P (X) is changed by the n2 × n2 linear
system which is

D vec(H) = vec(−P (X)). (8)

Note that DX is regular if and only ifD is a nonsingular matrix, and then inf‖H‖=1 ‖DX(H)‖ =
min‖H‖=1 ‖D vec(H)‖ > 0 [7, Lem. 1]. If DX is regular, then the linear equation DX(H) =
−P (X) has a unique solution H , where vec(H) solves the n2×n2 linear systemD vec(H) =
vec(−P (X)). It seems to be reasonable, however it is nonsense from the viewpoint of numeri-
cal analysis. In the Newton step, we need to reduce the system size of the equation (8) to n×n.
Here is the useful algorithm using Schur decomposition. Given X ∈ Cn×n, compute the Schur
decomposition of X

Q∗XQ = R,

where Q is unitary and R is upper triangular. Then, substituting this into (5) transforms the
system to

DR(H ′) = B1H
′ + B2H

′R + · · ·+ BmH ′Rm−1 = C (9)

where Bi =
∑m−i

j=0 AjX
m−j+i, H ′ = HQ and C = −P (X)Q. So, taking the vec function

both sides of (9) makes a linear system such that

vec(DR(H ′)) = D̃vec(H) (10)

where the matrix D̃ ∈ Cn2×n2
is given by

D̃ =
m∑

i=1

((RT)i−1 ⊗Bi). (11)

If we define D̃ij =
∑m

k=1[R
k−1]jiBk, then D̃ in (11) is represented by

D̃ =

D̃11

D̃21 D̃22
...

. . .
D̃n1 · · · · · · D̃nn

 .

SOLVING MATRIX POLYNOMIALS 61

Since D̃ is a block lower triangular matrix, using the block forward substitution, the equation
(10) is changed to n linear systems with size n× n such that

h′1 = D̃ −1
11 c1

h′2 = D̃ −1
22 (c2 − D̃21h′1)

...

h′n = D̃ −1
nn (c2 − D̃n1h′1 − · · · − D̃n,n−1h′n−1),

where h′i and ci are i-th columns of H ′ and C, respectively.

Algorithm 3.1. Given matrices R, B1, B2, · · · , Bm which is defined by (7) and (9)and positive
integers i, j (i ≤ j and i, j ≤ n), the following algorithm computes D̃ij

for r = 1 : m
D̃ij ← D̃ij + Rr−1(j, i)Br

end

Algorithm 3.2 (Solving the equation DX(H) = −P (X) by Schur decomposition). A0, · · · , Am, X ∈
Cn×n is given and X = QRQ∗ is the Schur decomposition of X . This algorithm finds
H ∈ Cn×n which is the solution of DX(H) = −P (X) in (5)

Bm ← A0, R1 ← I
for i = 1 : m− 1

Bm−i ← Bm−i+1X + Ai

Ri+1 ← RiR
end
C ← −(B1X + Am)Q
for i = 1 : n

d ← 0
for j = 1 : i− 1

Use algorithm (3.1) to compute D̃ij

d ← d + D̃ijH(:, j)
end
Use algorithm (3.1) to compute D̃ii

H(:, i) ← D̃−1
ii (C(:, i)− d)

end
H ← HQ∗

Let the matrix polynomial (1) have only real coefficient matrices. Although the desired
solvent is real above method may required complex arithmetic. We will use the technique of
Schur algorithm to desire an algorithm for computation a solvent that use only real arithmetic
if the given coefficient matrices are real.

62 J. H. SEO AND H.-M. KIM

Let X ∈ Rn×n be given and X = QR̂QT be a real Schur decomposition with

R̂ =

R11 · · · · · · R1p

R22
...

. . .
...

Rpp

 (12)

where Rii is 1× 1 or 2× 2 matrices. Substituting X = QR̂QT into (5) transforms the system
to

DR(H ′) = B1H
′ + B2H

′R̂ + · · ·+ BmH ′R̂m−1 = Ĉ (13)

where Bi =
∑m−i

j=0 AjX
m−j+i, H ′ = HQ, and Ĉ = −P (X)Q. By taking the vec function

both sides of the equation (13), we have the linear system given by

D̂vec(Ĥ) = vec(Ĉ) (14)

with

D̂ =

D̂11

D̂21 D̂22
...

. . .
D̂p1 · · · · · · D̂pp

where

D̂ij =

{
(I)Ψ(i) ⊗B1 +

∑m
k=2(Rji)k−1)T ⊗Bk if i == j∑m

k=2(R
k−1
ji)T ⊗Bk else.

and Ψ(i) is the number of columns of block matrix Rii in (12).
By quasi-block-forward substitution, we have p pieces of linear system such that

D̂iiĥi = ĉi −
i−1∑

k=1

D̂ikĥk, (15)

where

ĥ1
...

ĥp

 = vec(Ĥ),

ĉ1
...
ĉp

 = vec(Ĉ), and ĉi, ĥi ∈ CΨ(i)n for i = 1, 2, · · · , p. Note

that D̂ii’s are either 2n × 2n or n × n matrix, the index of element [Rij]11 (i ≤ j) of R̂ is(∑i−1
k=1 Ψ(k) + 1,

∑j−1
k=1 Ψ(k) + 1

)
and the size of Rij is Ψ(i)×Ψ(j).

Algorithm 3.3. Given matrices R̂, B1, B2, · · · , Bm which is defined by (13) and (7) and pos-
itive integers i, j (i ≤ j and i, j ≤ p), the following algorithm computes D̂ij

if i == j

D̂ij ← I2 ⊗B1 (I2 is 2× 2 identity matrix.)
else

D̂ij ← On×Ψ(i), n×Ψ(j) (Onm is n×m zero matrix.)

SOLVING MATRIX POLYNOMIALS 63

for r = 2 : m
D̂ij ← D̂ij + (Rr−1

ji)T ⊗Br

end

Algorithm 3.4 (Solving the equation DX(H) = −P (X) by real Schur decomposition). A0, · · · , Am, X ∈
Rn×n is given and X = QR̂QT is the real Schur decomposition of X in (13). This algorithm
find H ∈ Rn×n which is the solution of DX(H) = −P (X) in (5)

Bm = A0, R̂0 = I
for i = 1 : m− 1

Bm−i ← Bm−i+1X + Ai

R̂i ← R̂j−1R̂
end
Ĉ ← −(B1X + Am)Q
pos ← 0, i ← 1
while pos < n

if R̂(pos + 2, pos + 1) == 0 then Ψ(i) ← 1
else Ψ(i) ← 2
end
pos ← Ψ(i) + pos
i ← i + 1

end
pos ← 1
for i = 1 : p (p is the maximum of domain of Ψ.)

d ← On×Ψ(i),1

for j = 1 : i− 1
Use algorithm (3.3) to compute D̂ij

d ← d + D̂ij

end
Use algorithm (3.3) to compute D̂ii

ĥi ← D̂−1
ii [vec{C(:,pos : pos + Ψ(i)− 1)} − d]

if Ψ(i) == 1
H(:, pos) ← ĥi

else
H(:, pos) ← ĥi(1 : n, 1)
H(:, pos + 1) ← ĥi(n + 1, 2n, 1)

end
pos ← pos + Ψ(i)

end
H = HQT

We now show how to incorporate exact line searches when solving a matrix polynomial (1)
by Newton’s method. For implementation we need to find the exact expansion of P (X + tH).

64 J. H. SEO AND H.-M. KIM

Let µ, ν be the permutations of 1, 2, · · · , n, and integer m(1 ≤ m ≤ n) be given. Then the
relation µ ∼m ν given by µ(i) > m if and only if ν(i) > m and µ(i) ≤ m if and only if
ν(i) ≤ m for all i = 1, 2, · · · , n is an equivalent relation. So we can define the equivalent
class of permutations µ’s by [µ]m. Note that the number of [µ]m is n!/m!(n − m)!. Let
r1 = r2 = · · · = rm = X ∈ Cn×n, rm+1 = rm+2 = · · · = rn = Y ∈ Cn×n then the function
ΦX,Y : N× N→ Cn×n can be defined by

(1) ΦX,Y [0, 0] ≡ I ,
(2) ΦX,Y [m,n−m] ≡ ∑

[µ]m
r[µ]m(1)r[µ]m(2) · · · r[µ]m(n).

The function ΦX,Y is the sum of the products of all repeated permutations of X and Y . By
using the notation of Φ, we can describe the expansions of (X + tH)k for k = 0, 1, 2, · · · ,m

Am = AmΦXH [0, 0],

Am−1(X + tH) = Am−1X + tAm−1H,

= Am−1ΦX,H [1, 0] + tAm−1ΦX,H [0, 1],

Am−2(X + tH)2 = Am−2X
2 + Am−2(XH + HX) + t2Am−2H

2

= Am−2ΦX,H [2, 0] + tAm−2ΦX,H [1, 1] + t2Am−2ΦX,H [0, 2],
...

Am−k(X + tH)m = Am−kΦX,H [m, 0] + tAm−kΦX,H [m− 1, 1] + · · ·+ tmΦX,H [0,m].

Therefore we obtain the expansion formula

(X + tH)k =
k∑

i=0

tiΦX,H [k − i, i] (16)

and easily verify
(ΦX,H [i, j])∗ = ΦX∗,Y ∗ [i, j].

By using the formula (16) and equality DX(H) + P (X) = 0, P (X + tH) can be represented
by

P (X + tH) =
m∑

i=0

i∑

j=0

tjΦX,H [i− j, j]

= P (X) + tDX(H) +
m∑

i=2

i∑

j=2

tjΦX,H [i− j, j]

= (1− t)P (X) +
m∑

i=2

i∑

j=2

tjΦX,H [i− j, j].

Finally the merit function p(t) can be obtained by

SOLVING MATRIX POLYNOMIALS 65

p(t) = ||P (X + tH)||F2

= trace

(1− t)P (X)∗ +

m∑

i=2

i∑

j=2

ΦX∗,Y ∗ [i− j, j]

(1− t)P (X) +

m∑

i=2

i∑

j=2

ΦX,Y [i− j, j]

= (1− t)2||P (X)||2F + · · ·+ t2m ΦX∗,Y ∗ [0,m] ΦX,Y [0,m]

= (1− t)2||P (X)||2F + · · ·+ t2m||Hm||2F .

Since p′(0) = −2‖P (X)‖2
F < 0 and leading coefficient of p′(t) is positive, p′ has a real zero

in positive real number, and this zero corresponds to a minimum or a point of inflection of p. If
p(t) has the minimum for large t, then the Newton step with line search may have numerically
a bad effect on convergence. So we must restrict our attention to the appropriate interval (0, k].
Because t = 1 corresponds to a pure Newton step, k must be greater than 1. Thus we define t
by

p(t) = min
x∈(0,k]

p(x) with k > 1.

Roughly speaking, exact line searches means finding scalar t that makes X + tH closer point
in direction of H from solvent.

4. NUMERICAL EXPERIMENTS AND CONCLUSIONS

In this section we show and compare some experimental results using Newton’s method with
and without line searches. Our experiments were done in MATLAB. Iterations for Newton’s
method with and without exact line searches are terminated when the residual P (Xk) is of the
same order of magnitude as the round error in computing it, namely when the relative residual
ρ(Xk) satisfies

ρ(Xk) =
||fl(P (Xk))||F

||A0||F ||Xk||mF + · · ·+ ||Am||F ≤ nu, (17)

where u = 2−53 ' 1.1 × 10−16 is unit round off. MATLAB codes for Newton’s method has
an option to choose whether to use exact line searches. Suggested examples are in Kratz [7]
solved by pure Newton’s method. We will compare the results with exact line searches.

Consider a matrix equation

P1(X) = X3 +
[−6 6
−3 −15

]
X2 +

[
2 −42
21 65

]
X +

[
18 −66
33 81

]
= 0. (18)

We obtained two solvents such that

S1 =
[
4 −2
1 7

]
, S2 =

[
0 −2
1 3

]
.

66 J. H. SEO AND H.-M. KIM

with starting matrices 218I2 and −218I2, respectively. Figure 1 shows Newton’s method with
exact line searches converges faster than Newton’s method without exact line searches for the
two starting matrices.

Here, we consider the matrix differential equation

y(4) +

0 0 1
0 0 0
1 0 0

y(2) +

1 1 0
0 1 1
−1 0 1

y′ +

−20 2 1
2 −20 0
1 0 −20

y = 0.

Such equations occur in connection with vibrating systems. The characteristic polynomial is
given by

P2(X) = X4 +

0 0 1
0 0 0
1 0 0

X2 +

1 1 0
0 1 1
−1 0 1

X +

−20 2 1
2 −20 0
1 0 −20

 = 0. (19)

Figure 2 shows the convergence of Newton’s method with and without exact line searches in
P2(X) = 0 with starting matrices 24I and −24I .

Next, we choose starting matrices

X0 =

x1 x2 x3

x4 x5 x6

x7 x8 x9

 , −100 ≤ x1, · · · , x6 ≤ 100

with an equally spaces grid of 100 random points (x1, · · · , x9). Figure 3 shows how many
times a solvent is produced within 30, 50, and 100 iterations with and without exact line
searches. For Newton’s method with and without exact line searches, exact line searches give

0 5 10 15 20 25

10
−10

10
0

Number of iterations.

F
ro

be
ni

us
 n

or
m

 o
f P

(X
)

Starting matrix X1

0 5 10 15 20 25

10
−10

10
0

Number of iterations.

F
ro

be
ni

us
 n

or
m

 o
f P

(X
)

Starting matrix X2

line search
pure Newton

line search
pure Newton

FIGURE 1. Convergence for example (18) with and without Newton’s method.

SOLVING MATRIX POLYNOMIALS 67

the result in more frequent convergence. Convergence of Newton’s methods with and without
exact line searches is obtained to four different solvents depending on the starting matrix.

The matrix polynomial in (1) arises in some applications, for example, the stochastic prob-
lems and the polynomial eigenvalue problems. Specially, the polynomial eigenvalue problems
can be solved by the n×n standard eigenvalue problems, if we can find a solvent of associated
matrix polynomials.

0 5 10 15 20

10
−10

10
0

Number of iterations.

F
ro

be
ni

us
 n

or
m

 o
f P

(X
)

Starting matrix X1

0 5 10 15 20

10
−10

10
0

Number of iterations.

F
ro

be
ni

us
 n

or
m

 o
f P

(X
)

Starting matrix X2

line search
pure Newton

line search
pure Newton

FIGURE 2. Convergence for example (19) with and without Newton’s method.

Pure Newton’s method Exact line Searches

15

32

37

70

N
um

be
r

of
 ti

m
es

 c
on

ve
rg

en
ce

30 iterations allowed

50 iterations allowed

100 iterations allowed

FIGURE 3. Number of times convergence obtained for problem (19) with 100
different arbitrary starting matrices.

68 J. H. SEO AND H.-M. KIM

We described existence theorems for solvents of the matrix polynomials (1) using spectral
theory for the polynomial eigenvalue problems. And we had constructed the solvents for some
special matrix polynomial. We also derived Newton’s method and improved this algorithm
by Schur decomposition and incorporated exact line searches into Newton’s method. Finally,
we experimented with some examples. Newton’s method with exact line searches frequently
reduced the number of iterations.

REFERENCES

[1] George J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Stat. Comput., 2 (1981),
164–175.

[2] George J. Davis, An alogrithm to compute solvents of the matrix equation AX2 +BX +C = 0, ACM Trans.
Math. Software, 9 (1983), 246–254.

[3] J. E. Dennis, Jr., J. F. Traub, and R. P. Weber, The algebraic theory of matrix polynomials, Numerical Algo-
rithms, 13 (1976), 831–845.

[4] J. E. Dennis, Jr. and Robert B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, Englewood Cliffs, NJ, USA, 1983.

[5] N. J. Higham and H.-M. Kim, Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal., 20
(2000), 499–519.

[6] Nicholas J. Higham and Hyun-Min Kim, Solving a quadratic matrix equation by Newton’s method with exact
line searches, SIAM J. Matrix Anal. Appl., 23 (2001), 303–316.

[7] W. Kratz and E. Stickel, Numerical solution of matrix polynomial equations by Newton’s method, IMA J.
Numer. Anal., 7 (1987), 355–369.

[8] P. Lancaster, I. Gohberg and L. Rodman, Matrix Polynomials, Academic press, New York, 1982.
[9] P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, 2nd ed., Academic press, New

York, 1985.
[10] Peter Lancaster, Lambda-matrices and Vibrating Systems, Pergamon Press, Oxford, 1996.
[11] Guy Latouche and V.Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, Society

for Industrial and Applied Mathematics, 1999.
[12] Hong guo Xu and Lin zhang Lu, Properties of a quadratic matrix equation and the solution of the continuous-

time algebraic Riccati equation, Linear Algebra Appl., 222 (1995), 127–145.

