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\bstract - This paper addresses analysis and design of a fuzzy
nodel-based-controller for the control of uncertain SISO
ionlinear systems. In the design procedure, we represent the
ionlinear system by using a Takagi-Sugeno fuzzy model and
:onstruct a global fuzzy logic controller via parallel distributed
:ompensation and sliding mode control. Unlike other parallel
listributed controllers, this globally stable fuzzy controller is
lesigned without finding a common positive definite matrix for
1 set of Lyapunov equations, and has good tracking performance.
Che stability analysis is conducted not for the fuzzy model but
or the real underlying nonlinear system. Furthermore, the
rroposed method can be applied to partially known uncertain
ionlinear systems. A numerical simulation is performed for the
;ontrol of an inverted pendulum, to show the effectiveness and
‘easibility of the proposed fuzzy control method.

) 1. Introduction

A systematic analysis and design procedure for fuzzy control
systems is difficult since they are essentially nonlinear. In this
saper, stability analysis and design of the Takagai-Sugeno (TS)
‘uzzy model-based-control system for uncertain SISO nonlinear
systems are presented. On the basis of the TS fuzzy model,
some fuzzy-model-based controls have been investigated in the
iterature [1-4]. Sometimes, they are called parallel distributed
:ompensation (PDC). These kinds of design approaches suffer
from a few limitations: 1) A common positive definite matrix
nust be found to satisfy a set of Lyapunov equations, which is
lifficult especially when the number of fuzzy rules required to
zive a good plant model is large. 2) The performance of the
:losed-loop system is difficult to predict. 3) The stability is
guaranteed only for the simplified TS fuzzy models although
they have been successfully applied to the original, underlying
nonlinear systems. 4) The tracking problem of nonlinear
systems is not easy to discuss.

In [5-6] we presented a new kind of TS fuzzy model-based-
controller for known SISO nonlinear systems. In this paper, we
extend the result of the above approach to the control of
uncertain SISO nonlinear systems. A simulation is included for
the control of the inverted pendulum system, to show the
effectiveness and feasibility of the proposed fuzzy control
method.

2. TS Fuzzy Model

Consider a class of uncertain and complex SISO nonlinear
dynamic systems :
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" = f(x)+g(X)u M

where the scalar x is the output state variable of interest, the

scalar u is the system control input, and x = [x X x(”‘”]r

is the state vector. In equation (1), Ax) is an unknown nonlinear
continuous function of x, and g(x) is an unknown nonlinear
continuous and invertible function of x. This SISO nonlinear
system can be approximated by the TS fuzzy model, proposed
in [1], which combines the fuzzy inference rule and the local
linear state model [2-4]. The ith rule of the TS fuzzy model,
representing the complex SISO system (1), is the following:

PlantRulei: IFx(#)is F; and..and x"7(@t) is F)
THEN x(t) = A x(t)+b,u(t)

(i=12,.,nr

()

where Rule i denotes the ith fuzzy inference rule, F /’ (=12,
..., n) are fuzzy sets, x(t)e R" is the state vector, u(t)e R' is

the input control, A, € R™, B, € R™, r is the number of
fuzzy IF-THEN rules.

By using the fuzzy inference method with a singleton fuzzifier,
product inference, and center average defuzzifier, the dynamic
fuzzy model (2) can be expressed as the following global
model:

3w, (X(D)(A x(1) + Bu(t))

x(r) =& -
5w (x(1))
= 3,1, (e()(A x(0) + Byu(t) 3)
= AUO)X() + BuxO))u()
where
w,(x(t)) = TTF! (x4 (1))
J=1
ety = XD

ng,- (x(1)
M(x(1)) = (1, (x(2)), 1y (X(1)), -+, 1, (%(2)))

and F/(xY™"(f)) is the grade of membership of x"™(z) in

Fj' It is assumed, as usual, that



w,x(1))20,3G(=1,2,....r), Sw(x(t)>0
i=1
for all ¢. Therefore,
1x0)20,3G=1,2,...,7), gui(x(t)) =1

for all r. For simplicity of notation, let
M =p(x(1)), and p = u(x(1)).

Wi = wi (x(t)) ’

Definition 1: Model (3) is called the global state-space model of
the fuzzy system (2). If the pairs (A, B), i =1, 2, ..., r are
controllable, the fuzzy system (2) is called locally controllable.

3. Robust TS Fuzzy Model-Based-Controller
First, Let us define controller rule as (4).

Controller Rule i: If x, is F;, and ... and x, is F,,
THEN u =-Kx+r 4)
(i=1,2,..,71

where L; and r are scalar values. The scalar input r will be
determined later. Equation (4) can be rewritten as

ﬁ‘,wi -Kx+r) ,
U=t =Yy K x+r &)

=1

where v, =w,/ i w; . The closed-loop system is obtained from

i=t
the feedback interconnection of the nonlinear system (1) and the
controller (5), and can be described by the following equation:
" = F(x) + g(x)r (6)
where F(x)= f(x)— g(x)i v, K x
i=1
In order to proceed, we have to make the following

assumption.

Assumption 1. There exists functions fY(x), gY(x), and
g, (%) such that If@IK Y and

0<g,(M<g<g’(x).

Basedon fY(x), g’ (%), and g, (x), and observing (6), the
upper bound function of F(x) can be easily obtained as

| F(x) 1=l £(x)- g3 v, K x|

, i=] (7)
SFU+g" 1ITvK xI=FY(x)

i=1

Let X = x — x, be the tracking error in the variable x, and let

X=x-x, =[%--3"" (8)

In order to incorporate sliding mode control theory into the
fuzzy-model-based control architecture, we first define a time-

varying surface S(f) in the state-space R” by the scalar
equation s(x;t)=0, with

s(x;t) = (§+ A =3 4aX" D4 v g X 9)
t

where A is a strictly positive constant.
Given an initial condition, the problem of tracking n
dimensional vector x, can be reduced to that of keeping the

scalar quantity s at zero. More precisely, nth order tracking
problem in x can be replaced by a 1* order stabilization problem
in s [7].

The simplified, 1* order problem of keeping the scalar s at zero
can now be achieved by choosing the control law such that

g—srs <-nlsl outside of S(1) 10
t .

Differentiating s(x;t) with respect to time, we obtain

$= F(x)+g(x)r,

Fx)=FX)-x" +aX" "+ ... +a_X (11)

Since F(x)and g(x) are unknown; only their bounds can be
used to construct u. In this case, the control law r is chosen to be

r=—g'{Qsgn(s) - Ks} (12)
where K >0 and
Q=[FV+x{ -a%" Y~ .. —a_X|]

Substituting (12) into (11), we have

§=
F—{ggl[F +|x™ —gx" " —....— a,,_l'f?[] }sgn(s)— gg;'Ks
(13)
sTs=s"F
~sT(gg ' IFV +]x’ @ — ...~ a,. WIsgn(s)) - T gg 'K

< —sngZIKs
+ IST“FI - ’sTl{ggZI[FU +

< —sngles <0

~(n—1 ~
xP —g g - —an_,x']}

(14)

Therefore, the closed- loop fuzzy system (6) is asymptotically
stable. The results are summarized in the following theorem.

Theorem 1: If the dynamic fuzzy model described in (1) is
locally controllable, then the closed-loop fuzzy system
described in (6), with control law (12), is asymptotically stable.

Note that the controllability condition in Definition 1 is only
required for the design of local compensators in each rule.
Although the proposed control scheme is able to guarantee the
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stability of the overall system, it suffers from chattering
sroblem because of the switching function in the control law.
T'he chattering problem is inherent in the sliding mode control
ut can be eliminated by replacing the switching function by a
saturation function. In this method, the boundary layer around
e sliding surface in the phase plane is achieved [7].

4. Application to Inverted Pendulum
To illustrate the proposed method, we study the problem of
alancing an inverted pendulum on a cart. The dynamic

:quations of the pendulum are {4]

X =X

(15)

_ gsin(x;)— amlx§ sin(2x,)/ 2+ acos(x))u
4173~ amlcos®(x,)

vhere x, is the angle in rad of the pendulum from vertical axis,
¢, the angular velocity in rad s, g = 9.8 m/s” the acceleration
lue to gravity, m = 2.0 kg the mass of the pendulum, a = (m +
Wy!, M = 8.0 kg the mass of the cart, 2/ = 1.0m the length of
»endulum, and u the force applied to the cart. A TS fuzzy model
1sed to approximate the above system is [4]:

Plant Rules:
Rule 1: IF x, is about 0, THEN x= A x+Bu

Rule 2: IF x, is about 7/2, THEN x=A,x+B,u

vhere
1
ol B, =
0
ap

0 1
41/3 - amip?

28 ol B:
vith B =cos(88"). The membership functions for Rule 1 and

0
8
4113 —aml

0
a

4l/3—-aml

A,=|__ 28
n(4l/3-amiB?)

Rule 2 are shown in Fig. 1.

Rule 2
nx)

TN

0 X
-1.57 0 1.57

Fig. 1 Membership functions
The rules of the new fuzzy-model-based controller are:

Controller Rules:
Rule 1: IF x, is about 0, THEN u =-Kx+7r

Rule 2: IF x, is about n/2, THEN u=-K,x+r

Design of controller parameters is categorized into two parts;
me is for PDC and the other is for sliding mode control.

In order to determine the parameters of PDC, we simply
‘hoose the closed-loop eigenvalues (-2, -2) for both A, - B,K;
ind A, - B,K,. Then, we obtain
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K, =[-120.6667 -22.6667], K,=[-2551.6 -764.0]

The PDC, however, cannot guarantee the stability of the closed
system and deal with the tracking problem. As mentioned
before we combine the sliding mode control theory to resolve

these problems. To apply the proposed method to this system,
we need to determine the bounds Y, g¥, g,,and FY.For
this systemn, we have

| Fxx )I__Igsin(xl)—amlxzzsin(2x,)/2|
P a13-amicos’(n) |

 9-8+0.05%]

ol 17.2931+0.0882x2 = £V (x,,x,)

(16)

l acos x |

lg(x,x) =

|41/3~amlcos® x| an

<0.1765 = g¥ (x,,x,)

If we require thatl x; I w/6, then

1 T
ECOSE ‘
lg(x,,xz) >
'ﬂ——l—(Z)(O 5)cos o (18)
=0.1464=g,

The remaining parameters for sliding mode control are chosen
to beA =5, K =10. Using these parameters we can construct

the proposed stable fuzzy logic controller.

In order to show the stabilization performance of the proposed
method, we apply the controller to the given system (15). Figure
2 — Figure 4 shows the simulation results for initial condition
15° (0.2618 rad). Figure 2 shows the state x,(¢) (solid line) and

its desired value x, =msin(¢)/30 (dashed line) for the initial
condition, Figure 3 shows the state x,(z) (solid line) and its
desired value x,; =mcos()/30 (dashed line) for the initial
condition x(0) =[r/60 0]
u(t). As seen in this figure, the response of the proposed

and Figure 4 shows the control

method is satisfactory.
As mentioned above, the conventional PDC method cannot
deal with the tracking problem. Figure 6 — Figure 8 show the

x(0) =[-n/60 0T .
Figure 6 shows the state x,(t) (solid line) and its desired value
X, = msin(¢)/30 (dashed line). Figure 7 shows the state x,(t)
(solid line) and its desired value x,, =mcos(t)/30 (dashed

tracking results for initial conditions

line) for the initial condition. Figure 8 shows the control u(?).

To eliminate chattering, we simply introduce a saturation
function in the control law instead of the switching function.
The width of the boundary layer is 1.

Figure 5 — Figure 7 show the tracking results for initial

=[-z/60 Of
(solid line) and its desired value x,, = wsin(¢)/30 (dashed line).

conditions x(0) . Figure 5 shows the state x,(t)
Figure 6 shows the state x,(f) (solid line) and its desired value
X,, =mcos(t)/30 (dashed line) for the initial condition. Figure
7 shows the control u(r). Figure 8 — Figure 10 show the



tracking results for initial conditions x(0) = [7/60 0 . Figure
8 shows the state x(r) (solid line) and its desired value
x,, = wsin(f)/30 (dashed line). Figure 9 shows the state x,(t)
(solid line) and its desired value x,, =mcos(t)/30 (dashed
line) for the initial condition. Figure 10 shows the control u(t).
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Fig. 2 The state x,(¢r) (solid line) and its desired value
x,, = sin(f)/30 (dashed line) for the initial condition

x(0) =[-x/60 01
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Fig. 3 The state x,(¢) (solid line) and its desired value
X,, = mcos(t)/30 (dashed line) for the initial condition

x(0) =[z/60 O
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Fig. 4 The control u(z) for the initial condition

x(0) =[r/60 Of

02
[¢]

Time

Fig. 5 The state x,(¢) (solid line) and its desired value
x,;, = 7tsin(t)/30 (dashed line) for the initial condition

x(0) =[-n/60 0

Time

Fig. 6 The state x,(¢) (solid line) and its desired value
x,, = mcos(t)/30 (dashed line) for the initial condition

x(0) =[-m/60 O

Fig. 7 The control u(r) for the initial condition
x(0) =[-7/60 0]
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Fig. 8 The state x,(r) (solid line) and its desired value

x,; = msin(r)/30 (dashed line) for the initial condition

x(0) =[x /60 0F

Fig. 9 The state x,(t) (solid line) and its desired value
Xy, = mcos(t)/30 (dashed line) for the initial condition

x(0)={r/60 O]

Fig. 10 The control u(z) for the initial condition
x(0) =[z/60 01

5. Conclusion

In this paper, we propose a stable fuzzy logic controller
architecture for an uncertain SISO nonlinear system. In the
design procedure, we represent the fuzzy system as a family of
local state space models, and construct a global fuzzy logic
controller by considering each local state feedback controller.
Unlike other conventional methods, we incorporate the sliding
mode control theory into this approach to obtain robust tracking
performance without finding a common positive definite matrix.
Finally, simulation example is performed for the control of an
inverted pendulum to show the effectiveness and feasibility of
the proposed fuzzy control method.
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