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ON THE GENERAL DECAY STABILITY OF STOCHASTIC

DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

Xuejing Meng and Baojian Yin

Abstract. This work focuses on the general decay stability of nonlinear
stochastic differential equations with unbounded delay. A Razumikhin-
type theorem is first established to obtain the moment stability but with-

out almost sure stability. Then an improved edition is presented to derive
not only the moment stability but also the almost sure stability, while ex-
isting Razumikhin-type theorems aim at only the moment stability. By

virtue of the M -matrix techniques, we further develop the aforementioned
Razumikhin-type theorems to be easily implementable. Two examples are
given for illustration.

1. Introduction

In this paper, we consider the nonlinear stochastic differential equations with
unbounded delay of the form

(1.1) dx(t) = f(t, x(t), y(t))dt+ g(t, x(t), y(t))dw(t),

where y(t) = x(t − δ(t)), δ(t) ∈ C1(R+,R+), f(t, x, y) : R+ × Rn × Rn → Rn,
g(t, x, y) : R+ ×Rn ×Rn → Rn×m are Borel measurable functions, and w(t) is
an m-dimensional Brownian motion.

Eq.(1.1) may be regarded as the stochastically perturbed systems of the
following deterministic ordinary delay differential equations with unbounded
delay

(1.2) dx(t) = f(t, x(t), y(t))dt.

For Eq.(1.2), relevant results or applications can be found, for example, in
[5] or [6] for asymptotic estimation, variables’ change in [7] and asymptotic
behavior of the generalized pantograph differential equations in [9] or [12].
In both Eq.(1.2) and Eq.(1.1), there are some special systems, such as the
equations with a power delay if t − δ(t) = tγ , 0 < γ < 1, t ≥ 1, or the
equations with a proportional delay if t − δ(t) = λt, 0 < λ < 1, t ≥ 0. For
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the latter, the equations are called (deterministic or stochastic) pantograph
differential equations. Stochastic pantograph equations were studied in [2]
for the polynomial asymptotic behavior, while linear stochastic pantograph
equations were discussed in [1] for the polynomial stability.

The term general decay stability is also called the stability with general decay
rate. To put it formally, we need to define the so-called decay functions.

Definition 1.1. A function ψ : R → (0,∞) is said to be a ψ-type function if
it satisfies the following conditions:

(i) it is continuous and nondecreasing in R and continuously differentiable
in R+;

(ii) ψ(0) = 1 and ψ(∞) = ∞;
(iii) let ψ1(t) = ψ′(t)/ψ(t), then ϕ = supt≥0[ψ1(t)] <∞;
(iv) for any t, s ≥ 0, ψ(t) ≤ ψ(s)ψ(t− s).

It is obvious that functions ψ(t) = eαt and ψ(t) = (1 + t+)ᾱ for all α, ᾱ > 0
are ψ-type functions. If ψ1 and ψ2 are two ψ-type functions, then ψ1ψ2 is still
a ψ-type function.

Then we can define the p-th moment ψ-type stable and almost surely ψ-type
stable as follow:

lim sup
t→∞

logE|x(t)|p

logψ(t)
< 0

and

lim sup
t→∞

log |x(t)|
logψ(t)

< 0 a.s.

It is obvious that ψ-type stability implies the exponential stability and the
polynomial stability when ψ(t) = eαt and ψ(t) = (1 + t+)ᾱ for all α, ᾱ > 0,
respectively.

Stability is a central characteristic of the behavior in a (deterministic or
stochastic) dynamical system. In general, time delay and system uncertainty
are commonly encountered and are often sources of instability (see [11]). It
is therefore interesting to consider the stability of Eq.(1.1) whose delay is un-
bounded. Moreover, unbounded delay systems are often more complicated than
their bounded counterparts. Many methods which are valid for the former may
be inefficient or impossible for the latter. Some classical techniques, such as
Lyapunov direct methods in [13] or Razumikhin-type theorems in [14], can not
be directly transferred to those of the unbounded delay cases.

As for the Lyapunov direct method, we refer the reader to see Arnold’s
book [3], Khasminskii’s book [10], or the exponential stability in Mao [13] and
Khasminskii-type theorems in Mao [23]. However, this method requires proper
Lyapunov functionals to be found beforehand and hence it is sometimes diffi-
cult to do, especially in the case of stochastic functional differential equations
(SFDEs). Obviously, Eq.(1.1) is one special class of SFDEs. To examine effi-
ciently the stability of SFDEs, Mao [14] initiated Razumikhin-type method in
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1996. Then he extended it in neutral stochastic functional differential equa-
tions in Mao [15] in next year. In some sense, Razumikhin-type method has an
advantage over the Lyapunov direct method, because the satisfied conditions
for the former are usually weaker than the latter, that is, the conditions for the
Lyapunov method usually hold in a whole function space while those for the
Razumikhin-type method are much fewer. Along these lines, Mao and many
other researchers acquired many known stability results in the bounded delay
case; for example, see the stability analysis in Mao [16]. In the paper, our main
efforts are taken to obtain the Razumikhin-type theorems in the unbounded
delay case and to develop new techniques on the general decay stability.

As Mao stated in [21] that, generally speaking, the moment stability and
the almost sure stability do not imply each other. To deal with the almost sure
stability, there are several existing methods such as the exponential martingale
inequality approach in Mao [20] and the LaSalle principle in his series’ papers
[17, 18, 19] and an improved LaSalle method in Shen [25]. A well-known method
is that combining the moment stability with the linear growth condition to
obtain the almost sure stability, which is supported by Mao’s other series’
papers [20, 21, 22, 24]. Much different from theirs, without the linear growth
condition, we propose new method to make the p-th moment ψ-type stability
imply the almost sure ψ-type stability in the unbounded delay case with the
usual bounded delay as a special case.

The paper is arranged as follows. The next section begins with necessary
notation and some assumptions in the paper. In Section 3, we establish a
Razumikhin-type theorem and improve its key condition to obtain a new theo-
rem on p-th moment ψ-type stability as well as the almost sure ψ-type stability.
In Section 4, we apply these theorems to find some useful criteria in terms ofM -
matrix theory. As an application, we consider two two-dimensional examples
to illustrate our theory in last section.

2. Notations and assumptions

Throughout this paper, unless otherwise specified, we use the following no-
tation and definitions. Let | · | be the Euclidean norm in Rn. If A is a vector
or matrix, its transpose is denoted by AT. If A is a matrix, denote its trace
norm by |A| =

√
trace(ATA). Let R+ = [0,∞) and R++ = (0,∞). Denote

Rn
++ = {x ∈ Rn : xi > 0, i = 1, . . . , n} and x ≫ 0 ⇔ x ∈ Rn

++. For any

c = (c1, . . . , cn)
T ∈ Rn, let diag(c) = diag(ci) = diag(c1, c2, . . . , cn) denote

the n × n matrix with all elements zero except those on the diagonal which
are c1, . . . , cn. For simplicity, if a, b ∈ R, we denote a ∧ b = min{a, b} and
a ∨ b = max{a, b}. Let a+ = a ∨ 0.

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 sat-
isfying the usual conditions, that is, it is right continuous and increasing while
F0 contains all P-null sets. Let w(t) be an m-dimensional Brownian motion
defined on this probability space.
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Let C2(Rn;R+) denote the family of all functions V (x) from Rn to R+ which
are continuously twice differentiable, and define a function LV : R+×Rn×Rn →
R by

(2.1) LV (t, x, y) = Vx(x)f(t, x, y) +
1

2
trace[gT(t, x, y)Vxx(x)g(t, x, y)]

for all t ≥ 0, x, y ∈ Rn, where

Vx(x) =
(∂V (x)

∂x1
,
∂V (x)

∂x2
, . . . ,

∂V (x)

∂xn

)
, Vxx(x) =

[∂2V (x)

∂xi∂xj

]
n×n

.

If x(t) is a solution of Eq.(1.1), by the Itô formula,

dV (x(t)) = LV (x(t))dt+ Vx(x(t))g(t, x(t), y(t))dw(t),

where

LV (x(t)) = LV (t, x(t), y(t)), y(t) = x(t− δ(t)).(2.2)

Let C always represent a generic positive constant whose value may be
different for different appearances so that C+C = C and CC = C is understood
in an appropriate sense.

For convenience, let τ0 = δ(0). Denote by BC = BC([−τ0, 0],Rn) the
family of all continuous functions from [−τ0, 0] to Rn with the norm ∥ φ ∥=
sup−τ0≤θ≤0 |φ(θ)|. If τ0 = 0, BC = Rn.

Throughout the paper, we assume that Eq.(1.1) has a unique global solution
which is denoted by x(t) = x(t, ξ) on t ≥ τ0 and ξ ∈ BC. As usual, we
assume that f(t, 0, 0) = 0, g(t, 0, 0) = 0, which implies that Eq.(1.1) admits an
equilibrium solution. Moreover, we impose the following standing assumptions:

Assumption 2.1. For any initial data ξ ∈ BC, ξ ̸≡ 0 and for some two
constants α ≥ 0 and p ≥ 2,

E[∥ξ∥α+p] <∞.(2.3)

Assumption 2.2. For the constant α ≥ 0,

|xT f(t, x, y)| ∨ |g(t, x, y)|2 ≤ C(1 + |x|α+2 + |y|α+2).(2.4)

Assumption 2.3. For ci > 0, 1 ≤ i ≤ n, there exists a function V =∑n
i=1 ci|xi|p such that for two constants µ > 0, q ≥ 1,

(2.5)
ELV (x(t)) ≤ −µψ1(t)EV (x(t)), whenever EV (y(t)) ≤ qψµ(δ(t))EV (x(t)).

Assumption 2.1 is the moment bounds for initial data, which is made as
the basis on stability analysis. Assumption 2.2 implies the one-sided polyno-
mial growth condition on f and the polynomial growth condition on g. When
α = 0, they are the classical one-sided linear growth condition and the linear
growth condition, respectively, as in [8]. In addition, Assumption 2.3 is a usual
assumption on the Razumikhin methods (see [14], [15] or [16]).
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3. Razumikhin-type theorem and an improved edition

In this section, for p ≥ 2, we first establish a Razumikhin-type theorem
on the p-th moment ψ-type stability of Eq.(1.1), then develop an improved
edition to derive both p-th moment ψ-type stability and the almost sure ψ-
type stability.

Firstly, we need a lemma whose proof is omitted since it can be easily com-
pleted by the standard estimate method as in [16], Ch.5.

Lemma 3.1. Under Assumptions 2.1 and 2.2, let x(t) = x(t, ξ)(ξ ∈ BC) be a
global solution of Eq.(1.1). Then for α ≥ 0 and p ≥ 2,

E[ sup
−τ0≤s≤t

|x(s)|α+p] <∞.(3.1)

In the case of bounded delay, as some literature such as [21] or [22] put,
the moment exponential stability and linear growth condition do imply the
almost sure exponential stability. While in the case of unbounded delay, can
this result be kept as well? Or under what conditions does the p-th moment
ψ-type stability imply almost sure ψ-type stability? The following theorems
address these questions.

Theorem 3.2. Under Assumptions 2.1-2.3, let

Sµ(ξ) = sup
−τ0≤θ≤0

ψµ(θ)V (ξ(θ)).

Then the global solution x(t) of Eq.(1.1) has the following properties:

EV (x(t)) ≤ Sµ(ξ)ψ
−µ(t),(3.2)

E|x(t)|p ≤ Cψ−µ(t),(3.3)

lim sup
t→∞

lnE|x(t)|p

lnψ(t)
≤ −µ.(3.4)

Proof. Obviously, (3.2) implies (3.3) and (3.3) implies (3.4). Therefore, we only
need to prove (3.2). If we could prove (3.2) for γ ∈ (0, µ), we would complete
this proof. This is equivalent to proving that

(3.5) h(t) := ψγ(t)EV (x(t)) ≤ Sγ(ξ)

for all t ≥ 0.
First, when t = 0, we have

h(0) = EV (ξ(0)) ≤ Sγ(ξ).

Next we will show that (3.5) holds for all t > 0. Otherwise, by the continuity
of h(t), there must exist a maximal t0 ∈ R+ such that for all t ∈ [0, t0],
h(t) ≤ Sγ(ξ) = h(t0). Let ∆(t) = t− δ(t), by the definition of ψ-type function,
we have ψ(t) ≤ ψ(δ(t))ψ(∆(t)). The situation is divided into two cases.

Case 1: ∆(t0) ≥ 0. When ∆(t0) ≥ 0, we know ∆(t0) ∈ [0, t0]. Compute

EV (y(t0)) = EV (x(∆(t0))) = ψ−γ(∆(t0))h(∆(t0))
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≤ ψ−γ(∆(t0))Sγ(ξ)

= ψ−γ(∆(t0))h(t0)

= ψ−γ(∆(t0))ψ
γ(t0)EV (x(t0))

≤ ψγ(δ(t0))EV (x(t0))

≤ qψµ(δ(t0))EV (x(t0)).

Case 2: ∆(t0) < 0. From ∆(t0) < 0 we have

EV (y(t0)) = EV (ξ(∆(t0)))

≤ ψ−γ(∆(t0))Sγ(ξ).

Repeating the corresponding part of Case 1 yields

EV (y(t0)) ≤ qψµ(δ(t0))EV (x(t0)).

By Assumption 2.3, we have

ELV (x(t0)) ≤ −µψ1(t0)EV (x(t0)).

Note that EV (x(t0)) > 0. Otherwise, 0 = EV (x(t0)) = h(t0) = Sγ(ξ). This
contradicts ξ ̸≡ 0. Noting γ < µ, when t > t0 and t is sufficiently close to t0,
we have

ELV (x(t)) ≤ −γψ1(t)EV (x(t)).

By the Itô formula, we observe

h(T ) = h(t0) +

∫ T

t0

ψγ(t)[ELV (x(t)) + γψ1(t)EV (x(t))]dt

≤ h(t0)

for T > t0 and T sufficiently near t0. This contradicts the definition of t0. So,
(3.5) is confirmed for all t ≥ 0.

In the above proof, the continuity of functions h(t), EV (x(t)) and ELV (x(t))
is regarded as a fact, which we will make up for its proof now. First, it is known
that V (x(t)) and LV (x(t)) are almost surely pathwise continuous for all t ≥ 0.
Let G(t) = sup−τ0≤s≤t |x(s)|α+p. By Lemma 3.1, we have EG(t) < ∞ for all
t ≥ 0. Since

V (x(t)) ≤ C|x(t)|p ≤ C[G(t) + 1],

by the Lebesgue dominated convergence theorem, we obtain that EV (x(t)) is
continuous and h(t) is also continuous.

By Assumption 2.2, we can get

|LV (t, x, y)| ≤ C(1 + |x|α+p + |y|α+p),

|LV (x(t))| ≤ C[1 +G(t)].

Applying the dominated convergence theorem again to derive that ELV (x(t))
is continuous. This completes the proof. □
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Obviously, there are some weaknesses in Theorem 3.2. Firstly, the key con-
dition (2.5) is not easily tested. Moreover, like existing Razumikhin-type the-
orems (see [14], [15] or [16]), the almost sure stability can not be obtained.
However, the following improved result will overcome these weaknesses and
derive the almost sure stability without linear growth conditions.

Theorem 3.3. Let Assumptions 2.1 and 2.2 hold. Assume that there exist
constants a > b > 0, ε > 0 and ci > 0, 1 ≤ i ≤ n, such that for some function
V (x) =

∑n
i=1 ci|xi|p(p ≥ 2),

LV (t, x, y) ≤ ψ1(t)[−aV (x) + bV (y)ψ−ε(δ(t))].(3.6)

Then for µ ∈ (0, ε], conclusions (3.2)-(3.4) of Theorem 3.2 still hold. Assume
further that

(3.7) |Vx(x)g(t, x, y)| ≤ CV (x),

and there exists π0 ∈ [0, µ) such that for any π > π0,

(3.8)
∞∑
k=1

ψ−π(k) <∞,

then we have

lim sup
t→∞

ln |x(t)|
lnψ(t)

≤ −µ− π0
p

a.s.(3.9)

Proof. The proof will be divided into three steps.
Step 1. Noting ψ(t) is increasing on t, for µ ∈ (0, ε] and x(t) which satisfies

EV (y(t)) ≤ qψµ(δ(t))EV (x(t)),

then by condition (3.6) we have

ELV (x(t)) ≤ ψ1(t)[−aEV (x(t)) + bEV (y(t))ψ−ε(δ(t))]

≤ −aψ1(t)EV (x(t)) + bqψ1(t)ψ
µ(δ(t))ψ−ε(δ(t))EV (x(t))

≤ −(a− bq)ψ1(t)EV (x(t)).

Let µ = ε ∧ (a − b), there surely exists q ∈ [1, a/b) such that µ = a − bq > 0.
Therefore, we have tested Assumption 2.3. Thus, by Theorem 3.2, conclusions
(3.2)-(3.4) of Theorem 3.2 hold.

Step 2. Let m(t) = ψµ(t)V (x(t)). We need to prove

M(t) := E
[

sup
t≤s≤t+1

m(s)
]
≤ C.

By the Itô’s formula, we have

M(t) = E
{

sup
t≤s≤t+1

[
m(t) +

∫ s

t

Lm(r)dr +

∫ s

t

ψµ(r)Vx(x(r))g(r, x(r), y(r))dw(r)

]}(3.10)
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= E sup
t≤s≤t+1

m(t) + E
[

sup
t≤s≤t+1

∫ s

t

Lm(r)dr

]
+ E

[
sup

t≤s≤t+1

∫ s

t

ψµ(r)Vx(x(r))g(r, x(r), y(r))dw(r)

]
:= I1 + I2 + I3.

Then we will estimate I1, I2 and I3, respectively.
Firstly, connecting the conclusion (3.3) with that

I1 = E
[

sup
t≤s≤t+1

ψµ(t)V (x(t))

]
produces clearly that I1 ≤ C.

Then by condition (3.6), we find that

I2 = E
[

sup
t≤s≤t+1

∫ s

t

Lm(r)dr

]
= E

[
sup

t≤s≤t+1

∫ s

t

ψµ(r)[LV (x(r)) + µψ1(r)V (x(r))]dr

]
≤ E

∫ t+1

t

ψµ(s)ψ1(s)[bV (y(s))ψ−ε(δ(s)) + µV (x(s))]ds.

Noting ψ1(s) ≤ ϕ and ψµ(s) ≤ ψµ(s − δ(s))ψµ(δ(s)) ≤ ψµ(s − δ(s))ψε(δ(s)),
we have

I2 ≤ E
∫ t+1

t

[ϕbψµ(s− δ(s))V (y(s)) + ϕµψµ(s)V (x(s))]ds.

Using inequality (3.3) again, we get I2 ≤ C.
Thirdly, applying the well-known Burkholder-Davis-Gundy inequality yields

I3 = E
[

sup
t≤s≤t+1

∫ s

t

ψµ(r)Vx(x(r))g(r, x(r), y(r))dw(r)

]
≤ CE

[ ∫ t+1

t

|ψµ(s)Vx(x(s))g(s, x(s), y(s))|2ds
]1/2

.

Recalling condition (3.7) and the inequality
√
ab ≤ (a+ b)/2, a, b > 0, we have

I3 ≤ CE
[ ∫ t+1

t

|ψµ(s)V (x(s))|2ds
]1/2

≤ CE
[

sup
t≤s≤t+1

m(s)

∫ t+1

t

m(s)ds

]1/2
≤ M(t)

2
+ CE

∫ t+1

t

m(s)ds.
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Therefore, inserting all of these estimated bounds into Eq.(3.10) yields

M(t) ≤ C +
1

2
M(t) + CE

∫ t+1

t

m(s)ds.

Applying inequality (3.2) to get that Em(s) ≤ C, we have

M(t) ≤ C +
1

2
M(t).

Since we know that M(t) <∞ from Assumption 2.1, M(t) ≤ C as desired.
Step 3. Let π ∈ (π0, µ) be arbitrary. By the Chebyshev inequality, we have

P
(

sup
k≤t≤k+1

m(t) ≤ ψπ(k)

)
≤ ψ−π(k)M(k) ≤ C ψ−π(k), k = 1, 2, . . . .

Applying the Borel-Cantelli Lemma to get that for almost all ω ∈ Ω, sufficiently
large k and k ≤ t ≤ k + 1, we have

m(t) ≤ ψπ(k) ≤ ψπ(t).

This implies that for all t ≥ 0,

ψµ−π(t)V (x(t)) ≤ C.

Therefore

lim sup
t→∞

lnV (x(t))

lnψ(t)
≤ π − µ a.s.

Recalling that V (x) =
∑n

i=1 ci|xi|p and letting π → π0, we obtain

lim sup
t→∞

ln |x(t)|
lnψ(t)

≤ −µ− π0
p

a.s.

as required. □

Theorem 3.3 not only provides a systematic treatment for p-th moment ψ-
type stability and almost sure ψ-type stability, but also gives conditions that the
former implies the latter. To see this, under Assumptions 2.1-2.2 and conditions
(3.6)-(3.8), we have conclusions (3.3) and (3.9) which are p-th moment ψ-type
stability and almost sure ψ-type stability, respectively. Moreover, taking ψ(t) =
et and ψ(t) = (1 + t+), respectively, we obtain the exponential stability, the
polynomial stability and that the exponential stability implies the polynomial
stability.

Remark 3.4. If we choose ψ(t) = et, then there exists π0 = 0 ∈ [0, µ) such
that for any π > π0 condition (3.8) holds. This means that, when ψ(t) = et,
condition (3.8) holds automatically. Thus, if condition (3.7) is satisfied, then
the pth moment exponential stability can be used to derive the almost sure
exponential stability for Eq.(1.1).
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4. Further results

Obviously, in Theorem 3.3, it is inconvenient to check condition (3.6) since
it is unrelated to both functions f and g of the Eq.(1.1) explicitly. Based
on Theorem 3.3, a useful criterion will be established and it can be easily
implementable in this section.

To specialize condition (3.6), we impose some conditions on the functions f
and g to guarantee Theorem 3.3. For any (t, x, y) ∈ R+ × Rn × Rn,

(H1) xifi(t, x, y) ≤ ψ1(t)

{
− σi0x

2
i − σi|xi|α+2 +

n∑
j=1

[σijx
2
j + σ̄ijy

2
jψ

−ε(δ(t))]

+
n∑

j=1

K∑
k=1

σijk|xj |αk+2

}
;

(H2) |gi(t, x, y)|2 ≤ ψ1(t)
n∑

j=1

λijx
2
j ,

where ε, σi, σi0 for all i = 1, . . . , n are positive constants, and other parameters
are all nonnegative.

Condition (H1) is the one-sided polynomial condition on f . When α = 0, this
condition will be specialized as the classical one-sided linear growth condition
as in [8]. In addition, condition (H2) is the classical linear growth condition on
g.

Noting that ψ−ε(δ(t)) is decreasing in ε and Definition 1.1, we know that
if conditions (H1) and (H2) are satisfied, then they will still hold when ε is
replaced by any ε′ ∈ (0, ε). For condition (H1), without loss of generality, let
0 ≤ α1 < α2 < · · · < αK < α.

To proceed, we need a useful lemma.

Lemma 4.1. Let α, p > 0, 0 ≤ α1 ≤ α2 ≤ · · · ≤ αK < α, a > 0, b > z =∑K
k=1 zk, zk ≥ 0 (1 ≤ k ≤ K). If

(4.1) a > zρ1,

where

(4.2) ρ1 := (α− α1)

(
αα1
1

αα

) 1
α−α1

,

when ρ1 = 0 if α1 = α and ρ1 = 1 if α1 = 0, then there exists a constant
ā ∈ (0, a) such that for any t ≥ 0,

(4.3) atp + btα+p −
K∑

k=1

zkt
αk+p ≥ ātp.
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Proof. If we can prove that there is a constant a0 ∈ (zρ1, a) such that for any
t ≥ 0

F (t) := a0 + btα −
K∑

k=1

zkt
αk ≥ 0,

then we can get the desired assertion. Two cases will be considered.
Case 1: K = 1. Let z = z1 and β = α1. Then F (t) = a0 + btα − ztβ

for t ≥ 0. Assume that α > β > 0 (when α = β, the proof is obvious). It is
noted that there exists a unique t0 = (βz/αb)1/(α−β) such that F ′(t0) = 0. By
condition (4.1), recalling that z < b and a0 > zρ1, we have

F (t0) = a0 −
z(α− β)

α

(βz
αb

) β
α−β

= a0 − z(α− β)

(
ββ

αα

) 1
α−β

(
z

b

) β
α−β

> 0.

Noting that F (0) = a0, F (∞) = ∞, we get for any t ≥ 0, F (t) ≥ a0∧F (t0) > 0.
Case 2: K > 1. Noting that 0 ≤ α1 ≤ α2 ≤ · · · ≤ αK < α, we have

F (t) ≥
{
a0 + btα − ztα1 := F1(t), if t ∈ [0, 1];
a0 + btα − ztαK := FK(t), if t > 1.

By Case 1, we know for all t ≥ 0, F1(t) ≥ 0. Let

G(x) = (α− x)
( xx
αα

) 1
α−x

for x ∈ (0, α). Direct computation produces that

G′(x)

G(x)
=
d logG(x)

dx
=
α log(x/α)

(α− x)2
< 0,

which implies that for x ∈ (0, α), G(x) is decreasing, so we have a > zG(α1) ≥
zG(αK). By the proof of Case 1, we therefore have that for all t ≥ 0, FK(t) ≥ 0.

In sum, for all t ≥ 0, F (t) ≥ F1(t) ∧ FK(t) ≥ 0, as desired. The proof is
complete. □

To ease our presentation, we introduce the following notations:

(4.4a) σi• =
n∑

j=1

σij , σ̄i• =
n∑

j=1

σ̄ij λi• =
n∑

j=1

λij , Di =
K∑

k=1

dik;

(4.4b) γi = pσi0 − (p− 2)(σi• + σ̄i•)−
(p− 1)(p− 2)

2
λi•;

(4.4c) ζi = p(p− 2)ρ1

n∑
j=1

K∑
k=1

σijk
αk + p

, ωi = (pσiρ1) ∧ γi;
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(4.5) Σ = [σij ], Λ = [λij ], Σk =
[
σijk

αk + 2

αk + p

]
, k = 1, . . . ,K.

By virtue of the M -matrix theory, we will give a new criterion to measure
the ψ-type stability of Eq.(1.1).

Theorem 4.2. Let conditions (3.8), (H1) and (H2) hold. If for ωi, ζi,Σ,Λ and
Σk defined by (4.4)-(4.5),

(4.6) Q = diag(ωi − ζi)− 4Σ− (p− 1)Λ− ρ1p
K∑

k=1

(Σk)

is an M -matrix, then for any initial data ξ ∈ BC and µ ∈ (0, ε], the global
solution x(t, ξ) of Eq.(1.1) satisfies (3.2)-(3.4) and (3.9).

Proof. Step 1. p-th moment ψ-type stability : Since Q is an M -matrix, there
surely exists c ∈ Rn

++ such that QTc ∈ Rn
++ (See [4]). Applying (2.1) in

V =
∑n

i=1 ci|xi|p yields

LV (t, x, y) = p
n∑

i=1

ci|xi|p−2xifi(t, x, y) +
1

2
p(p− 1)

n∑
i=1

ci|xi|p−2|gi(t, x, y)|2

:= I1 + I2.

By condition (H1), we first estimate I1.

I1
ψ1(t)

≤ p
n∑

i=1

ci|xi|p−2

{
− σi0x

2
i − σi|xi|α+2 +

n∑
j=1

[σijx
2
j + σ̄ijy

2
jψ

−ε(δ(t))]

+

n∑
j=1

K∑
k=1

σijk|xj |αk+2

}

≤ −p
n∑

i=1

ciσi0|xi|p − p
n∑

i=1

ciσi|xi|α+p + p
n∑

i,j=1

ciσij
(p− 2)|xi|p + 2|xj |p

p

+ p
n∑

i,j=1

ciσ̄ij
(p− 2)|xi|p + 2|yj |p

p
ψ−ε(δ(t))

+ p
n∑

i,j=1

ci

K∑
k=1

σijk
(p− 2)|xi|αk+p + (αk + 2)|xj |αk+p

αk + p
,

where we have used the Young inequality

xαyβ ≤ α|x|α+β + β|y|α+β

α+ β
, x, y ≥ 0, α, β > 0.

Using condition (H2) and the Young inequality again, we have

I2
ψ1(t)

≤ 1

2
p(p− 1)

n∑
i=1

ci|xi|p−2
n∑

j=1

λijx
2
j
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≤ 1

2
p(p− 1)

n∑
i,j=1

ciλij
(p− 2)|xi|p + 2|xj |p

p

=
p− 1

2

n∑
i,j=1

ciλij [(p− 2)|xi|p + 2|xj |p].

Therefore,

I1 + I2
ψ1(t)

≤ −
n∑

i=1

[
pciσi0 − (p− 2)ci

n∑
j=1

σij − (p− 2)ci

n∑
j=1

σ̄ij − 2

n∑
j=1

cjσji

− (p− 1)(p− 2)

2
ci

n∑
j=1

λij − (p− 1)
n∑

j=1

cjλji

]
|xi|p

− p

n∑
i=1

ciσi|xi|α+p + 2

n∑
i,j=1

ciσ̄ij |yj |pψ−ε(δ(t))

+ p
n∑

i,j=1

K∑
k=1

[
(p− 2)ciσijk

1

αk + p
+ cjσjik

αk + 2

αk + p

]
|xi|αk+p

:= −
n∑

i=1

[
ai|xi|p + bi|xi|α+p −

K∑
k=1

dik|xi|αk+p
]
+ 2

n∑
i,j=1

ciσ̄ij |yj |pψ−ε(δ(t)),

where

ai = pciσi0 − (p− 2)ci(σi• + σ̄i•)−
(p− 1)(p− 2)

2
ciλi•

−
n∑

j=1

cj [2σji + (p− 1)λji];

bi = pciσi;

dik = p

[
(p− 2)ci

n∑
j=1

σijk
αk + p

+

n∑
j=1

cjσjik
αk + 2

αk + p

]
.

Hence, we obtain

ai − ρ1Di

= ci

[
pσi0− (p− 2)(σi• + σ̄i•)−

(p− 1)(p− 2)

2
λi•− p(p− 2)ρ1

n∑
j=1

K∑
k=1

σijk
αk + p

]

−
n∑

j=1

cj
[
2σji + (p− 1)λji

]
− pρ1

n∑
j=1

K∑
k=1

cjσjik
αk + 2

αk + p
;
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bi −Di

= ci

[
pσi − p(p− 2)

n∑
j=1

K∑
k=1

σijk
αk + p

]
− p

n∑
j=1

K∑
k=1

cjσjik
αk + 2

αk + p
.

Noting that QTc ∈ Rn
++ implies that for all i = 1, . . . , n, ai > ρ1Di, bi > Di.

Thus, all the conditions of Lemma 4.1 are tested, so by the proof of Lemma
4.1, we observe that there exists a constant āi ∈ (0, ai − ρ1Di) such that

ai|xi|p + bi|xi|α+p −
K∑

k=1

dik|xi|αk+p ≥ āi|xi|p.(4.7)

This implies that

I1 + I2
ψ1(t)

≤ −
n∑

i=1

āi|xi|p + 2
n∑

i,j=1

ciσ̄ij |yj |pψ−ε(δ(t)),

that is

LV (t, x, y) ≤ ψ1(t)

[
−

n∑
i=1

āi|xi|p + 2

n∑
i,j=1

ciσ̄ij |yj |pψ−ε(δ(t))

]

≤ ψ1(t)

[
−

n∑
i=1

āi|xi|p + 2
n∑

i=1

( n∑
j=1

cj σ̄ji
)
|yi|pψ−ε(δ(t))

]
.(4.8)

Next, we prove that (4.8) implies condition (3.6). Noting that QTc ∈ Rn
++

implies that 2
∑n

j=1 cjσji < ai −Diρ1, by the proof of Lemma 4.1, we observe

that there exists a constant āi ∈
(
2
∑n

j=1 cjσji, ai − Diρ1
)
such that (4.7) is

satisfied and āi > 2
∑n

j=1 cjσji. This implies āic
−1
i > 2c−1

i

∑n
j=1 cjσji. So

there must exist positive constants a, b such that
a < āic

−1
i ,

b ≥ 2c−1
i

∑n
j=1 cjσji,

a > b.

Therefore, we have

LV (t, x, y) ≤ ψ1(t)

[
− a

n∑
i=1

ci|xi|p + b
n∑

i=1

ci|yi|pψ−ε(δ(t))

]
= ψ1(t)

[
− aV (x) + bV (y)ψ−ε(δ(t))

]
.

That is, condition (3.6) of Theorem 3.3 is tested. Under conditions (H1) and
(H2), we confirm the existence of (2.4). Then the required assertions (3.2)-(3.4)
hold following Theorem 3.3.
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Step 2. Almost sure ψ-type stability : For the function V (x) =
∑n

i=1 ci|xi|p,
we have Vx(x) = p

∑n
i=1 ci|xi|p−2xi. Using condition (H2) and noting |ψ1(t)| ≤

ϕ, we compute

|Vx(x)g(t, x, y)|2 ≤ |Vx(x)|2|g(t, x, y)|2

≤ p2
∣∣∣∣ n∑
i=1

ci|xi|p−2xi

∣∣∣∣2|ψ1(t)|
n∑

j=1

λijx
2
j

≤ p2ϕ

∣∣∣∣ n∑
i=1

ci|xi|p−1

∣∣∣∣2 n∑
j=1

λijx
2
j .

Using the elementary inequality( n∑
j=1

λjxj
)2 ≤

n∑
j=1

λj

n∑
j=1

λjx
2
j , λj ≥ 0, xj ∈ R,(4.9)

we have

|Vx(x)g(t, x, y)|2 ≤ p2ϕ
n∑

i=1

ci

n∑
i=1

ci|xi|2p−2
n∑

j=1

λijx
2
j

≤ p2ϕ
n∑

i=1

ci

n∑
i,j=1

ciλij
(2p− 2)|xi|2p + 2|xj |2p

2p

= pϕ

n∑
i=1

ci

n∑
i,j=1

ciλij
[
(p− 1)x2pi + x2pj

]
.

Then we claim that there must exist some constant such that

|Vx(x)g(t, x, y)|2 ≤ CV (x)2.

Therefore, condition (3.7) of Theorem 3.3 is tested. Making use of conditions
(3.7) and (3.8), we have assertion (3.9), as desired. □

By comparing Theorem 3.3 with Theorem 4.2, one finds that the former is
more general while the later is much simpler. Somewhat remarkably, Theorem
4.2 merely requires the matrix Q to be an M -matrix, which will bring more
convenience in applications. Moreover, by modifying slightly condition (4.6) in
Theorem 4.2, we have another useful theorem.

Define

M = diag(pσiρ1 − ζi)− pρ1

K∑
k=1

(Σk),(4.10)

N = diag(γi − ζi)− 2Σ− (p− 1)Λ− pρ1

K∑
k=1

(Σk),(4.11)
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H = diag(γi − ζi)− 4Σ− (p− 1)Λ− pρ1

K∑
k=1

(Σk),(4.12)

where γi, ζi,Σ,Λ and Σk are defined by(4.4)-(4.5).

Theorem 4.3. Under conditions (3.8), (H1) and (H2). If there exists c =
(c1, . . . , cn)

T ∈ Rn
++ such that MTc,NTc,HTc ∈ Rn

++, then the conclusions of
Theorem 4.2 hold.

Proof. Recalling the proof of Theorem 4.2 and noting that there exists c =
(c1, . . . , cn)

T ∈ Rn
++ such that MTc,NTc,HTc ∈ Rn

++, we get

(4.13) ci(pσiρ1 − ζi)− pρ1

n∑
j=1

K∑
k=1

cjσjik
αk + 2

αk + p
> 0,

(4.14) ci(γi − ζi)−
n∑

j=1

cj
[
2σji + (p− 1)λji

]
− pρ1

n∑
j=1

K∑
k=1

cjσjik
αk + 2

αk + p
> 0,

(4.15) ci(γi − ζi)−
n∑

j=1

cj
[
4σji + (p− 1)λji

]
− pρ1

n∑
j=1

K∑
k=1

cjσjik
αk + 2

αk + p
> 0,

which implies ai > Diρ1, bi > Di and ai−Diρ1 > 2
∑n

j=1 cjσji. Repeating the
proof of Theorem 4.2 yields the desired assertion. □

It is easy to see that the conditions in Theorem 4.2 are stronger than
those of Theorem 4.3, while the latter gains more efficiency in applications.
For the applications of Theorem 4.3, is there surely a c ∈ Rn

++ such that

MTc,NTc,HTc ∈ Rn
++? The following lemma presents a positive answer to

this question and provides a sufficient condition.

Lemma 4.4. Assume that Ak ∈ Rn×n(1 ≤ k ≤ K), if A1, . . . , AK−1, AkA
−1
l

(1 ≤ l < k ≤ K) are all M -matrices, then there exists c ∈ Rn
++ such that

Akc ∈ Rn
++(1 ≤ k ≤ K).

Proof. When k = 1, the result holds clearly.
Suppose K > 1. If A1, . . . , AK−1, AkA

−1
l (1 ≤ l < k ≤ K) are M -matrices,

then we have

A2A
−1
1 , . . . , AK−1A

−1
1 , AkA

−1
1 (AlA

−1
1 )−1(2 ≤ l < k ≤ K)

are M -matrices. By induction, there exists c′ ∈ Rn
++ such that

AkA
−1
1 c′ ∈ Rn

++, 2 ≤ k ≤ K.

Let c = A−1
1 c′, by A−1

1 ≥ 0, we derive that there exists c ∈ Rn
++, such that

Akc ∈ Rn
++(1 ≤ k ≤ K). This completes the proof. □



ON THE GENERAL DECAY STABILITY 531

By Lemma 4.4, we observe if we show M,N,H−1M,H−1N and N−1M
are all M -matrices, then we will be sure that there exists c ∈ Rn

++ such that

MTc,NTc,HTc ∈ Rn
++. However, this criterion is only sufficient but not nec-

essary. Therefore, the testification of the criterion of Theorem 4.3 is more
complicated than that of Theorem 4.2.

Furthermore, noting the expressions of the matrices N and H in Theorem
4.2, we see that if H is an M -matrix, then N must be. Therefore, we have the
following corollary.

Corollary 4.5. Under conditions (3.8), (H1) and (H2). If there exists c ∈ Rn
++

such that MTc,HTc ∈ Rn
++, then the conclusions of Theorem 4.3 hold.

For the easy use of Corollary 4.5, let us cite some useful results on M -
matrices in Berman and Plemmons’s book [4].

Definition 4.1. Assume that A = [aij ] ∈ Rn×n, aij ≤ 0 < aii(i ̸= j, i, j =
1, . . . , n), then the following three terms are equivalent:

(i) A is an M -matrix;
(ii) there exists c ∈ Rn

++ such that Ac ∈ Rn
++;

(iii) All the leading principal minors of A are positive.

In particular, for 2×2 matrices, we have the following accurate criterion.

Lemma 4.6. LetM = [mij ] ∈ R2×2,H = [hij ] ∈ R2×2, mii, hii > 0,mij , hij ≤
0 for i ̸= j, i, j = 1, 2. Then there exists c ∈ R2

++ such that MTc,HTc ≫ 0 if
and only if

|m12|
m22

∨ |h12|
h22

<
m11

|m21|
∧ h11

|h21|
.(4.16)

Proof. If there exists c ∈ R2
++ such that MTc,HTc ≫ 0, then it follows from

inequalities m1ic1 +m2ic2 > 0 and h1ic1 + h2ic2 > 0(i = 1, 2) that

|m12|
m22

<
c2
c1
<

m11

|m21|
and

|h12|
h22

<
c2
c1
<

h11
|h21|

,

which shows (4.16). On the other hand, if (4.16) holds, choose

c2 ∈
( |m12|
m22

∨ |h12|
h22

,
m11

|m21|
∧ h11

|h21|

)
.

Let c1 = 1, so that c = (c1, c2)
T ∈ R2

++ satisfies MTc,HTc≫ 0. □

Remark 4.7. Lemma 4.6 indicates that Corollary 4.5 can be easily imple-
mentable in a two-dimensional case. To see this, if condition (4.16) is satisfied,
there must exist a c = (c1, c2)

T ∈ R2
++ such that MTc, HTc ∈ R2

++. However,
in the case of dimension higher than two, it is more difficult to find such a
c ∈ Rn

++, but Theorem 4.2 finds its way if Q proves to be an M -matrix.
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5. Examples

In this section, we shall consider several two-dimensional equations to illus-
trate our results.

Example 5.1. Consider

dxi(t) = ψ1(t)
{
− 5xi(t)− bx3i (t) +

[
y1(t) + y2(t)

]
ψ−ε(δ(t)) + x2j (t)

}
dt

+ xi(t)
√
ψ1(t)dw(t),

(5.1)

where i, j = 1, 2, b > 0 is a constant, ψ1(t) is defined in Definition 1.1 and
yi(t) = xi(t− δ(t)), δ(t) ∈ C1(R+,R+).

Let τ0 = δ(0). Then t − δ(t) ∈ [−τ0,∞). If τ0 < ∞, then ψ−ε(δ(t)) ≥
ψ−ε(τ0) → 1(ε → 0), so ψ−ε(δ(t)) can be deleted when τ0 < ∞, that is,
ψ−ε(δ(t)) works only when delay is unbounded. Furthermore, if we choose
ψ(t) = et, then ψ1(t) = 1 and Eq.(5.1) becomes the following special case

dxi(t) =
{
− 5xi(t)− bx3i (t) + x1(t− δ(t)) + x2(t− δ(t)) + x2j (t)

}
dt

+ xi(t)dw(t).
(5.2)

As for Eq. (5.1), on one hand, we compute

xifi(t, x, y)

ψ1(t)

= − 5x2i − bx4i + (xiy1 + xiy2)ψ
−ε(δ(t)) + xix

2
j

≤ − 5x2i − bx4i +
x2i + y21ψ

−ε(δ(t))

2
+
x2i + y22ψ

−ε(δ(t))

2
+
x3i + 2x2j

3

= − 5x2i − bx4i +
[
x2i +

1

2
(y21 + y22)ψ

−ε(δ(t))
]
+

1

3
(x3i + 2x3j ),

which shows that condition (H1) holds with σi0 = 5, σi = b, σii = 1, σij = 0,
σ̄i1 = σ̄i2 = 1/2, σii1 = 1/3, σij1 = 2/3, K = 1, αk = 1, α = 2. On the other
hand,

|gi(t, x, y)|2 = ψ1(t)x
2
i (t),

which states that condition (H2) holds with λii = 1, λij = 0.
Choosing p = 2 and substituting above parameters into (4.2), (4.4) and (4.5)

give ρ1 = 1/4, σi• = 1, σ̄i• = 1, λi• = 1, γi = 10, ζi = 0, ωi = (b/2) ∧ 10, and

Σ =

(
1 0
0 1

)
, Λ =

(
1 0
0 1

)
, Σ1 =

(
1/3 2/3
2/3 1/3

)
.

Next, the substitution of above parameters into (4.6) implies (4.10) and
(4.12) yields

Q = (qij)2×2 =

(
b
2 ∧ 10− 31

6 − 1
3

−1
3

b
2 ∧ 10− 31

6

)
,

M = (mij)2×2 =

(
b
2 − 1

6 −1
3

−1
3

b
2 − 1

6

)
,
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H = (hij)2×2 =

(
29/6 −1/3
−1/3 29/6

)
.

By Definition 4.1, Q is an M -matrix if and only if q11 > 0, q11q22 > q12q21,
that is, [(b/2) ∧ 10]− (31/6) > 1/3, or b > 11. Therefore, by Theorem 4.2, we
have that if b > 11, the trivial solution of Eq.(5.1) is ψ-type stable in mean
square. Furthermore, if there exists π0 ∈ [0, µ) such that (3.8) is satisfied, then
the trivial solution of Eq.(5.1) is almost surely ψ-type stable.

Substituting mij and hij(i, j = 1, 2) into inequality (4.16), we obtain 2
3b−1 ∨

2
29 <

3b−1
2 ∧ 29

2 , which implies that b > 10. So, using Corollary 4.5, we obtain
that if b > 10, the trivial solution of Eq.(5.1) is ψ-type stable in mean square.
Furthermore, if there exists π0 ∈ [0, µ) such that (3.8) is satisfied, then the
trivial solution of Eq.(5.1) is almost surely ψ-type stable. It is evident that
b > 11 implies b > 10, which clearly shows that the conditions of Corollary 4.5
are weaker than those of Theorem 4.2.

Especially, if we choose ψ(t) = et and let π0 = 0 ∈ [0, µ), then ψ1(t) = 1
and for any π > 0,

∑∞
k=1 e

−kπ < ∞. We can conclude that when b > 10, the
trivial solution of Eq.(5.1) is exponentially stable in mean square and almost
surely exponentially stable.

Example 5.2. Consider
(5.3){

dx1(t) = [−7x1(t)− 7x31(t) + y1(t)e
−εδ(t)]dt+ [x1(t) + sin2 x2(t)]dw(t);

dx2(t) = [−7x2(t)− 7x32(t) + y2(t)e
−εδ(t)]dt+ [x2(t) cosx1(t)]dw(t),

with initial data ξ ∈ BC, where yi(t) = xi(t−δ(t))(i = 1, 2), δ(t) ∈ C1(R+,R+).

Define

f1(t, x, y) = −7x1 − 7x31 + y1e
−εδ(t);

f2(t, x, y) = −7x2 − 7x32 + y2e
−εδ(t);

g1(t, x, y) = x1 + sin2 x2;

g2(t, x, y) = x2 cosx1.

For i = 1, 2, we compute

xifi(t, x, y) = −7x2i − 7x4i + xiyie
−εδ(t)

≤ −7x2i − 7x4i +
1

2

(
x2i + y2i e

−εδ(t)
)
;

|g1(t, x, y)|2 ≤ 2(x21 + x22);

|g2(t, x, y)|2 ≤ x22.

Choosing V (x) =
∑2

i=1 x
2
i , we obtain

LV (t, x, y) = 2

2∑
i=1

(
xifi(t, x, y) +

1

2
|gi(t, x, y)|2

)
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= 2

2∑
i=1

xifi(t, x, y) +

2∑
i=1

|gi(t, x, y)|2

≤ −11x21 − 14x41 + y21e
−εδ(t) − 10x22 − 14x21

4 + y22e
−εδ(t)

≤ −10(x21 + x22) + (y21 + y22)e
−εδ(t).

Choosing a = 10 > b = 1 shows that condition (3.6) is satisfied.

|Vx(x)g(t, x, y)| ≤ 2

2∑
i=1

|xi|(2x21 + 3x22)
1
2

≤ 4(x1 + x2)
2 ≤ 8V (x),

which shows that condition (3.7) is satisfied. Since ψ(t) = et, by Remark 3.4 we
know condition (3.8) holds. Applying Theorem 3.3 we have that, for any initial
data ξ ∈ BC, the trivial solution of Eq.(5.3) are both exponentially stable in
mean square and almost surely exponentially stable.

6. Conclusions

In this paper, our efforts focus on obtaining the Razumikhin-type theorems
in the unbounded delay case and to develop new techniques on the general
decay stability. A Razumikhin-type theorem is first established to obtain the
moment stability but without almost sure stability of nonlinear stochastic dif-
ferential equations with unbounded delay. Then an improved edition can be
used to derive not only the moment stability but also the almost sure stability,
while the earlier Razumikhin-type theorems solely aim at the moment stability.
By virtue of the M -matrix techniques, we further develop the aforementioned
Razumikhin-type theorems to be easily implementable. An example is given
for illustration.

In contrast to the earlier publications in the direction, our emphasis is put
more on methodic consideration than on theoretic development, and our con-
tributions are simply summarized as follow: First, existing Razumikhin-type
theorems are appropriate only for the bounded delay case, while ours are
valid in both the bounded delay and the unbounded delay: Second, existing
Razumikhin-type theorems aim at only the moment stability, while ours can be
used to obtain not only the moment stability but also the almost sure stability:
Third, by virtue of M -matrix theory, we develop the Razumikhin-type method
to be easily implementable: Last, several kinds of stability, such as the expo-
nential stability and the polynomial stability, can be simultaneously treated in
our theory.
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