• 제목/요약/키워드: nonlinear dynamic system

검색결과 1,476건 처리시간 0.034초

비선형 불규칙 진동 보의 등가에너지법에 의한 선형화 (Linearization of Nonlinear Random Vibration Beam by Equivalent Energy Method)

  • 이신영
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.71-76
    • /
    • 2008
  • Nonlinear dynamic system under random excitation was analyzed by using stochastic method. A linearization method was used in order to linearize non-linear structural characteristics but the parametric excitation was used as it was given. An equivalent energy method which equalizes the expectation value of energy of the original nonlinear system and that of quasi-linearized system was proposed. Ito's differential rule was applied to obtain steady state moments. Quasi-linearization coefficients can be obtained the iterative calculation of linearization scheme and steady state moments. Monte Carlo simulation was used to verify the results of the proposed method. Nonlinear vibration of a slender beam was analyzed in this research. The analysis results were compared with Monte Carlo simulation result and showed good agreement. As the spectral density of the given excitation increased, the analysis results showed the better agreement with Monte Carlo simulation.

불확실성을 갖는 비선형 시스템의 적응 제어기 설계 (Design of Adaptive Regulator for a Nonlinear Uncertain System)

  • 진주화;유경탁;손영익;서진헌
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF

초고속 원심분리 회전축계의 최적설계 (An Optimum Design of a Rotor-Bearing Spindle System for a Ultra Centrifuge)

  • 김종립;윤기찬;박종권
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.145-152
    • /
    • 1998
  • This paper presents an optimum design of a rotor-bearing spindle system for a ultra centrifuge (80,000 RPM) supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modeled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyzed by using a transfer-matrix method iteratively. For optimization. we use the cost function that simultaneously minimizes the weight of a rotor and maximizes the separation margins to yield the critical speeds as far from the operating speed as possible. Augmented Lagrange Multiplier (ALM) method is employed for the nonlinear optimization problem. The result shows that the rotor-bearing spindle system is optimized to obtain 9.5% weight reduction and 21% separation margin.

  • PDF

자석 척력의 자전거 쿠션장치 적용 및 비선형성 고찰 (An Observation of the Application of a Magnetic Force to the Bicycle Cushion System and its Nonlinearity)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.42-47
    • /
    • 2018
  • This paper describes the dynamical behavior of the bicycle and its nonlinear effect when magnetic repulsive forces are applied to the bicycle cushion system. A finite-element method was used to obtain its reliabilities by comparing the experimental and numerical values and select the proper magnet sizes. The Equivalent spring stiffness values were evaluated in terms of both linear and nonlinear approximations, where the nonlinear effect was specifically investigated for the ride comfort. The corresponding equations of linear and nonlinear motion were derived for the numerical model with three degrees of freedom. Dynamic behaviors were observed when the bicycle ran over a curvilinear road in the form of a sinusoidal curve. The analysis in this paper for the observed nonlinearity of magnetic repulsive forces will be a useful guide to more accurately predict the cushion design for any vehicle system.

비선형 내점법을 이용한 전력시스템의 평형점 최적화 (Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method)

  • 송화창;로델 도사노
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1000-1006
    • /
    • 2007
  • This paper presents a methodology to calculate an optimal solution of equilibrium to differential algebraic equations for power systems. It employs a nonlinear interior point method to solve the optimization formulation which includes dynamic equations representing the two-axis synchronous generator model with AVR and speed governing controls, algebraic equations, and steady-state nonlinear loads. This paper also adopts two algorithms for the improvement of solution convergence. In power system analysis and control, equilibrium optimization (EOPT) is applicable for diverse purposes that need the consideration of dynamic model characteristics at a steady-state condition.

지종교체 공정의 Bilinear 모델링 (Bilinear Modeling of Grade Change Operation in Paper Mills)

  • 추연욱;여영구;강홍
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2004년도 춘계학술발표논문집
    • /
    • pp.97-106
    • /
    • 2004
  • The paper making process itself is a typical nonlinear process with complicated dynamics. In the application of advanced control-methods especially for the grade change operations the nonlinear process is linearized to give suitable linear models to be used in the control strategies. However, the use of the linear model is limited within short range containing steady-state operating conditions for grade change operation. In this paper a bilinear model for the nonlinear grade change processes is presented. We can see that the dynamic behavior for grade change operations can be effective analyzed by using multivariable bilinear model.

  • PDF

유체가 이송하는 테더가 있는 인공위성의 동특성 분석 (Nonlinear Dynamic Analysis of a Satellite with Tether Conveying Fluid)

  • 정원영;이규호;정진태
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.691-697
    • /
    • 2011
  • The purpose of this study is to analyze nonlinear dynamics of a tethered satellite. The coupled non-linear equations of motion are derived by using the extended Hamilton's principle with the polar coordinate system. In order to analyze the response of tethered satellite, time responses are computed by the Newmark's time integration method. We also investigate the dynamic behavior of the system and the effects of length of tether, tip mass and conveyed fluid through the tether with time variation.

해상크레인과 대형 중량물의 상호 작용을 고려한 탑재 시뮬레이션 (Erection Simulation Considering Interaction between a Floating Crane and a Heavy Cargo)

  • 차주환;이규열
    • 한국CDE학회논문집
    • /
    • 제15권1호
    • /
    • pp.70-83
    • /
    • 2010
  • Recently, floating cranes are mainly used to erect heavy blocks or cargos for constructing ships in many shipyards. It is important to estimate the dynamic motion of the heavy cargo suspended by a floating crane and the tension of the wire ropes between the floating crane and the heavy cargo. In this paper, the coupled dynamic equations of motion are set up for considering the 6 degree-of-freedom floating crane and the 6-degrees-of-freedom heavy cargo based on multibody system dynamics. Depending on the cargo weight, the motion of the floating crane would be changed to nonlinear state. The nonlinear terms in the equation of motion are considered. In addition, the nonlinear hydrostatic force, the linear hydrodynamic force, wire rope force, mooring force and gravity force are considered as the external forces. As the result of this paper, we analyze the engineering effect for erecting the heavy cargo by using the floating crane.

Nonlinear Dynamics of Homogeneous Azeotropic Distillations

  • Lee, Moonyong;Cornelius Dorn;Manfred Morari
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.461-467
    • /
    • 1998
  • In spite of significant nonlinearities even in the simplest model, some types of steady-state and dynamic behavior common for nonlinear systems have never been associated with distillation columns. In recent years, multiplicity of steady states has been a subject of much research and is now widely accepted. Subsequently, stability of steady states has been explored. Another phenomenon that. although widely observed in chemical reactors, has not been associated with models of distillation columns is the existence of periodic oscillations. In this article we study the steady-state and dynamic behavior of the azeotropic distillation of the ternary homogeneous system methanol-methyl butyrate-toluene. Our simulations reveal nonlinear behavior not reported in earlier studies. Under certain conditions, the open-loop distillation system shows a sustained oscillation associated with branching to periodic solutions. The limit cycles are accompanied by traveling waves inside the column. Significant underdamped oscillations are also observed over a wide range of product rates.

  • PDF

Effects of Material Nonlinearity on Seismic Responses of Multistoried Buildings with Shear Walls and Bracing Systems

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • 제24권3호
    • /
    • pp.75-84
    • /
    • 2022
  • Scads of earthquake-resistant systems are being invented around the globe to ensure structural resistance against the lateral forces induced by earthquake loadings considering structural safety, efficiency, and economic aspects. Shear wall and Bracing systems are proved to be two of the most viable solutions for seismic strengthening of structures. In the present study, three numerical models of a G+10 storied building are developed in commercial building analysis software considering shear wall and bracing systems for earthquake resistance. Material nonlinearity is introduced by using plastic hinges. Analyses are performed utilizing two dynamic methods: Response Spectrum analysis and nonlinear Time-history analysis using Kobe and Loma Prieta earthquake data and results are compared to observe the nonlinear behavior of structures. The outcomes exposed that a significant increase in the seismic responses occurs due to the nonlinearity in the building systems. It was also found that building with shear wall exhibits maximum resistance and minimum nonlinearity when subjected to dynamic loadings.