• 제목/요약/키워드: nonlinear deformation

검색결과 997건 처리시간 0.03초

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

비선형 점탄성 부싱모델의 회전방향모드에 대한 실험적 연구 (An Experimental Study of Nonlinear Viscoelastic Bushing Model for Torsional Mode)

  • 이성범;이성재;전성철;송동률;정재영;박찬석;이우현
    • Elastomers and Composites
    • /
    • 제43권1호
    • /
    • pp.25-30
    • /
    • 2008
  • 자동차 부싱은 차체로 전달되는 하중을 줄여주는 역할을 하는 자동차 현가장치의 주요 부품으로 바깥쪽 슬리브와 안쪽의 축 사이에서 가운데가 비어 있는 실린더의 형상을 가진다. 차축에 작용되는 힘과 모멘트에 대한 부싱의 상대변위 및 변형각도는 점탄성 성질을 나타내며, 부싱에서 힘과 모멘트와 이에 대한 변위와 변형각도의 관계는 다물체 동역학 시뮬레이션에 매우 중요하다. 본 연구는 자동차 부싱의 회전방향 모드에 대한 모멘트와 변형각도의 점탄성 관계를 변형각도에 의존하는 모멘트 완화함수를 통하여 부싱모델을 완성하였으며, 완성된 점탄성 부싱 모델은 회전방향 모드에 대한 실험값과 비교하여 검증하였다.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구 (Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases)

  • 이승훈;김한수
    • 한국전산구조공학회논문집
    • /
    • 제34권1호
    • /
    • pp.1-8
    • /
    • 2021
  • 플랜트 증기운 폭발은 TNT 폭발물에 의한 폭발과는 다른 특징이 있으며 압력파 양상과 비슷하다. 대표적인 유형의 폭압 산정법은 TNT 등가량 환산법과 멀티에너지법이 있다. TNT 등가량 환산법은 폭굉과 같은 충격파를 전제로 하며, 멀티에너지법은 폭연과 같은 압력파를 전제로 한다. 본 연구는 세 가지 플랜트 폭발 사례를 적용하여 플랜트 증기운 폭발의 적절한 폭압을 도출하기 위한 연구를 수행하였다. 폭발 사례에 대하여 피해를 입은 부재를 선정한 후, 단자유도 해석과 비선형 동적 해석을 수행하여 변형과 손상 정도를 비교분석하였다. 구조물의 피해 정도는 TNT 등가량 환산법보다는 멀티에너지법에 의한 폭압을 사용한 경우가 실제 상황에 더욱 근접한 것으로 나타났다. 또한, 멀티에너지법의 폭발강도계수를 7 또는 8로 가정할 경우 증기운 폭발의 폭압 모델을 비교적 정확하게 산정할 수 있을 것으로 판단된다.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가 (Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading)

  • 김성완;윤다운;전법규;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권1호
    • /
    • pp.112-119
    • /
    • 2021
  • 지진하중으로 인한 배관계통의 파괴모드는 라체트를 동반하는 저주기 피로파괴이며 비선형 거동이 집중되고 파손이 발생하는 요소는 엘보인 것으로 나타났다. 본 연구에서는 저주기 피로에 의한 SCH 40 3인치 탄소강관엘보의 파괴기준을 정량적으로 표현하기 위하여 한계상태를 누수로 정의하고 면내반복가력실험을 수행하였다. 배관계통에서 지진하중에 취약한 요소인 탄소강관엘보에 대하여 모멘트-변형각의 관계를 이용한 손상지수를 나타내었으며 힘-변위의 관계를 이용하여 산정된 손상지수와 비교-분석하였다. 탄소강관엘보에 대하여 반복되는 외력에 의한 소산에너지에 기반을 둔 손상지수로서 누수가 발생한 한계상태를 정량적으로 표현하였다.

구조물-비구조요소 2자유도 결합시스템 해석을 통한 비구조요소 내진설계변수 평가 (Evaluation of Seismic Design Parameters for Nonstructural Components Based on Coupled Structure-Nonstructural 2-DOF System Analysis)

  • 배창준;이철호;전수찬
    • 한국지진공학회논문집
    • /
    • 제26권3호
    • /
    • pp.105-116
    • /
    • 2022
  • Seismic demand on nonstructural components (NSCs) is highly dependent on the coupled behavior of a combined supporting structure-NSC system. Because of the inherent complexities of the problem, many of the affecting factors are inevitably neglected or simplified based on engineering judgments in current seismic design codes. However, a systematic analysis of the key affecting factors should establish reasonable seismic design provisions for NSCs. In this study, an idealized 2-DOF model simulating the coupled structure-NSC system was constructed to analyze the parameters that affect the response of NSCs comprehensively. The analyses were conducted to evaluate the effects of structure-NSC mass ratio, structure, and NSC nonlinearities on the peak component acceleration. Also, the appropriateness of component ductility factor (Rp) given by current codes was discussed based on the required ductility capacity of NSCs. It was observed that the responses of NSCs on the coupled system were significantly affected by the mass ratio, resulting in lower accelerations than the floor spectrum-based response, which neglected the interaction effects. Also, the component amplification factor (ap) in current provisions tended to underestimate the dynamic amplification of NSCs with a mass ratio of less than 15%. The nonlinearity of NSCs decreased the component responses. In some cases, the code-specified Rp caused nonlinear deformation far beyond the ductility capacity of NSCs, and a practically unacceptable level of ductility was required for short-period NSCs to achieve the assigned amount of response reduction.

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

구조 유연도를 고려한 메쉬 반사판 안테나의 케이블 네트워크 형상 설계 (Form-finding Analysis of Cable Networks Considering a Flexibility of the Structures for Mesh Reflector Antennas)

  • 노진호;최혜윤;정화영;김효태;윤지현
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.68-76
    • /
    • 2022
  • 본 논문에서는 기하학적 특성을 고려한 케이블 네트 형상설계 방법론을 제시하고, 트러스 링 그리고 케이블 네트의 구조 유연도를 고려한 반사판 안테나의 케이블 네트워크 형상 실효성을 검증한다. 기하학적 비선형성을 고려한 케이블 네트의 유한요소 모델을 개발한다. 경계조건의 하중에 따른 형상변형 해석을 통하여, 케이블 네트의 형상 설계변수 특성을 제시 한다. 프레임 요소를 이용하여 전개형 트러스 링 구조를 모델링하고 정적 하중 해석을 수행한다. 전개된 링 구조에 가해지는 장력에 의해 케이블 네트 반사판은 정확한 형상을 유지하게 된다. 가해지는 장력, 케이블 네트 그리고 트러스 링 구조의 유연도를 고려하여, 케이블 네트워크 형상설계에 반영하고 최종 형상을 제시한다.