• Title/Summary/Keyword: nonlinear Lagrangian algorithm

Search Result 42, Processing Time 0.028 seconds

Material and Geometrical Noninear Analysis of Reinforced Concrete Columns under Cyclic Loading (반복하중을 받는 철근콘크리트 기둥부재의 재료 및 기하적인 비선형 해석)

  • 김운학
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • This paper presents an analytical prediction of the hysteresis behavior of reinforced concrete long column with rectangular section under the cyclic loading state. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bar and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack has taken place. The strength increase of concrete due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The formulation of these models for concrete and reinforcing bar has been based on the smeared crack concept that the stress-strain relationship of reinforced concrete element would be defined using the average values. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The analytically predicted behavior was compared with test result and they showed good agreement in overall behavior.

  • PDF

A Numerical Simulation of Three- Dimensional Nonlinear Free surface Flows (3차원 비선형 자유표면 유동의 수치해석)

  • Chang-Gu Kang;In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.38-52
    • /
    • 1991
  • In this paper, a semi-Lagrangian method is used to solve the nonlinear hydrodynamics of a three-dimensional body beneath the free surface in the time domain. The boundary value problem is solved by using the boundary integral method. The geometries of the body and the free surface are represented by the curved panels. The surfaces are discretized into the small surface elements using a bi-cubic B-spline algorithm. The boundary values of $\phi$ and $\frac{\partial{\phi}}{\partial{n}}$ are assumed to be bilinear on the subdivided surface. The singular part proportional to $\frac{1}{R}$ are subtracted off and are integrated analytically in the calculation of the induced potential by singularities. The far field flow away from the body is represented by a dipole at the origin of the coordinate system. The Runge-Kutta 4-th order algorithm is employed in the time stepping scheme. The three-dimensional form of the integral equation and the boundary conditions for the time derivative of the potential Is derived. By using these formulas, the free surface shape and the equations of motion are calculated simultaneously. The free surface shape and fille forces acting on a body oscillating sinusoidally with large amplitude are calculated and compared with published results. Nonlinear effects on a body near the free surface are investigated.

  • PDF

Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks

  • Xie, Zhigang;Song, Xin;Cao, Jing;Xu, Siyang
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.746-758
    • /
    • 2022
  • This paper focuses on a mobile edge-computing-enabled heterogeneous network. A battery level-aware task-scheduling framework is proposed to improve the energy efficiency and prolong the operating hours of battery-powered mobile devices. The formulated optimization problem is a typical mixed-integer nonlinear programming problem. To solve this nondeterministic polynomial (NP)-hard problem, a decomposition-based task-scheduling algorithm is proposed. Using an alternating optimization technology, the original problem is divided into three subproblems. In the outer loop, task offloading decisions are yielded using a pruning search algorithm for the task offloading subproblem. In the inner loop, closed-form solutions for computational resource allocation subproblems are derived using the Lagrangian multiplier method. Then, it is proven that the transmitted power-allocation subproblem is a unimodal problem; this subproblem is solved using a gradient-based bisection search algorithm. The simulation results demonstrate that the proposed framework achieves better energy efficiency than other frameworks. Additionally, the impact of the battery level-aware scheme on the operating hours of battery-powered mobile devices is also investigated.

Circuit-Switched “Network Capacity” under QoS Constraints

  • Wieselthier, Jeffrey E.;Nguyen, Gam D.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.230-245
    • /
    • 2002
  • Usually the network-throughput maximization problem for constant-bit-rate (CBR) circuit-switched traffic is posed for a fixed offered load profile. Then choices of routes and of admission control policies are sought to achieve maximum throughput (usually under QoS constraints). However, similarly to the notion of channel “capacity,” it is also of interest to determine the “network capacity;” i.e., for a given network we would like to know the maximum throughput it can deliver (again subject to specified QoS constraints) if the appropriate traffic load is supplied. Thus, in addition to determining routes and admission controls, we would like to specify the vector of offered loads between each source/destination pair that “achieves capacity.” Since the combined problem of choosing all three parameters (i.e., offered load, admission control, and routing) is too complex to address, we consider here only the optimal determination of offered load for given routing and admission control policies. We provide an off-line algorithm, which is based on Lagrangian techniques that perform robustly in this rigorously formulated nonlinear optimization problem with nonlinear constraints. We demonstrate that significant improvement is obtained, as compared with simple uniform loading schemes, and that fairness mechanisms can be incorporated with little loss in overall throughput.

A Heuristic Algorithm for a Ship Speed and Bunkering Decision Problem (선박속력 및 급유결정 문제에 대한 휴리스틱 알고리즘)

  • Kim, Hwa-Joong;Kim, Jae-Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.19-27
    • /
    • 2016
  • Maritime transport is now regarded as one of the main contributors to global climate change by virtue of its $CO_2$ emissions. Meanwhile, slow steaming, i.e., slower ship speed, has become a common practice in the maritime industry so as to lower $CO_2$ emissions and reduce bunker fuel consumption. The practice raised various operational decision issues in terms of shipping companies: how much ship speed is, how much to bunker the fuel, and at which port to bunker. In this context, this study addresses an operation problem in a shipping companies, which is the problem of determining the ship speed, bunkering ports, and bunkering amount at the ports over a given ship route to minimize the bunker fuel and ship time costs as well as the carbon tax which is a regulatory measure aiming at reducing $CO_2$ emissions. The ship time cost is included in the problem because slow steaming increases transit times, which implies increased in-transit inventory costs in terms of shippers. We formulate the problem as a nonlinear lot-sizing model and suggest a Lagrangian heuristic to solve the problem. The performance of the heuristic algorithm is evaluated using the data obtained from reliable sources. Although the problem is an operational problem, the heuristic algorithm is used to address various strategic issues facing shipping companies, including the effects of bunker prices, carbon taxes, and ship time costs on the ship speed, bunkering amount and number of bunkering ports. For this, we conduct sensitivity analyses of these factors and finally discuss study findings.

Estimation algorithms of the model parameters of robotic manipulators

  • Ha, In-Joong;Ko, Myoung-Sam;Kwon, Seok-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.932-938
    • /
    • 1987
  • The dynamic equations of robotic manipulators can be derived from either Newton-Euler equation or Lagrangian equation. Model parameters which appear in the resulting dynamic equation are the nonlinear functions of both the inertial parameters and the geometric parameters of robotic manipulators. The identification of the model parameters is important for advanced robot control. In the previous methods for the identification of the model parameters, the geometric parameters are required to be predetermined, or the robotic manipulators are required to follow some special motions. In this paper, we propose an approach to the identification of the model parameters, in which prior knowledge of the geometric parameters is not necessary. We show that the estimation equation for the model parameters can be formulated in an upper block triangular form. Utilizing the special structures, we obtain a simplified least-square estimation algorithm for the model parameter identification. To illustrate the practical use of our method, a 4DOF SCARA robot is examined.

  • PDF

Dynamic Modeling of 2 DOF Parallel Manipulator (2 자유도 병렬 메니퓰레이터의 동적 모델링)

  • Lee, Jong Gyu;Lee, Sang Ryong;Lee, Choon Young;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.897-904
    • /
    • 2014
  • In this paper, two-DOF parallel manipulator has the sliders which execute a linear reciprocating motion depending on parallel guides and the end-effector which can be adjusted arbitrarily. To investigate the dynamic characteristics of the manipulator, the dynamic performance index is used. The index is able to be obtained by the relation between the Jacobian matrix and the inertia matrix. The kinematic and the dynamic analysis find these matrices. Also, the dynamic model of the manipulator is derived from the Lagrange formula. This model represents complicated nonlinear equations of motion. With the simulation results of the dynamic characteristic of the manipulator, we find that the dynamic performance index is based on the selection of the ranges for the continuous movement of the manipulator and the dynamic model derived can be used to the control algorithm development of the manipulator.

A T-S Fuzzy Identification of Interior Permanent Magnet Synchronous (매입형 영구자석 동기전동기의 T-S 퍼지 모델링)

  • Wang, Fa-Guang;Kim, Min-Chan;Kim, Hyun-Woo;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • Control of interior permanent magnet (IPMSM) is difficult because its nonlinearity and parameter uncertainty. In this paper, a fuzzy c-regression models clustering algorithm which is based on T-S fuzzy is used to model IPMSM with a series linear model and weight them by memberships. Lagrangian of constrained function is built for calculating clustering centers where training output data are considered. Based on these clustering centers, least square method is applied for T-S fuzzy linear model parameters. As a result, IPMSM can be modeled as T-S fuzzy model for T-S fuzzy control of them.

Optimization approach applied to nonlinear analysis of raft-pile foundations

  • Tandjiria, V.;Valliappan, S.;Khalili, N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.533-550
    • /
    • 1999
  • Optimal design of raft-pile foundations is examined by combining finite element technique and the optimization approach. The piles and soil medium are modeled by three dimensional solid elements while the raft is modelled by shell elements. Drucker-Prager criterion is adopted for the soil medium while the raft and the piles are assumed to be linear elastic. For the optimization process, the approximate semi-analytical method is used for calculating constraint sensitivities and a constraint approximation method which is a combination of the extended Bi-point approximation and Lagrangian polynomial approximation is used for predicting the behaviour of the constraints. The objective function of the problem is the volume of materials of the foundation while the design variables are raft thickness, pile length and pile spacing. The generalized reduced gradient algorithm is chosen for solving the optimization process. It is demonstrated that the method proposed in this study is promising for obtaining optimal design of raft-pile foundations without carrying out a large number of analyses. The results are also compared with those obtained from the previous study in which linear analysis was carried out.

Development of a back analysis program for reasonable derivation of tunnel design parameters (합리적인 터널설계정수 산정을 위한 역해석 프로그램 개발)

  • Kim, Young-Joon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.357-373
    • /
    • 2013
  • In this paper, a back analysis program for analyzing the behavior of tunnel-ground system and evaluating the material properties and tunnel design parameters was developed. This program was designed to be able to implement the back analysis of underground structure by combination of using FLAC and optimized algorithm as direct method. In particular, Rosenbrock method which is able to do direct search without obtaining differential coefficient was adopted for the back analysis algorithm among optimization methods. This back analysis program was applied to the site to evaluate the design parameters. The back analysis was carried out using field measurement results from 5 sites. In the course of back analysis, nonlinear regression analysis was carried out to identify the optimum function of the measured ground displacement. Exponential function and fractional function were used for the regression analysis and total displacement calculated by optimum function was used as the back analysis input data. As a result, displacement recalculated through the back analysis using measured displacement of the structure showed 4.5% of error factor comparing to the measured data. Hence, the program developed in this study proved to be effectively applicable to tunnel analysis.