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Abstract

In this paper, a semi— Lagrangian method is used to solve the nonlinear hydrodynamics of a three—
dimensional body beneath the free surface in the time domain. The boundary value problem is solved by
using the boundary integral method. The geometries of the body and the free surface are represented
by the curved panels. The surfaces are discretized into the small surface elements using a bi—cubic B

—spline algorithm. The boundary values of ¢ and %? are assumed to be bilinear on the subdivided

surface. The singular part proportional to % are subtracted off and are integrated analytically in the

calculation of the induced potential by singularities.

The far field flow away from the body is represented by a dipole at the origin of the coordinate sys-
tem. The Runge—Kutta 4 —th order algorithm is employed in the time stepping scheme. The three—di-
mensional form of the integral equation and the boundary conditions for the time derivative of the po-
tential is derived. By using these formulas, the free surface shape and the equations of motion are cal-
culated simultaneously. The free surface shape and the forces acting on a body oscillating sinusoidally
with large amplitude are calculated and compared with published results. Nonlinear effects on a body
near the free surface are investigated.
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1. Introduction

In the design of submerged bodies operating
near free surface the free surface effects are
considered. The linearized theories for the free
surface problem were developed during many
decades. Recently the nonlinear free surface
problem is solved in the time domain by the
semi — Lagrangian methodl

Longuet—Higgins and Cokelet[1] presented
a mixed Bulerian—Lagrangian method for fol-
lowing the time history of space—periodic ir-
rotaional surface waves. The only independent
variables at the beginning of each time step
were the coordinates and velocity potential of
marked particles on the free surface. At each
time—step an integral equation was solved for
the new normal component of velocity. This me-
thod was applied to a free, steady wave of finite
amplitude, and was found to give excellent
agreement with calculations based on Stoke’s
series. It was then extended to unsteady waves,
produced by initially applying an asymmetric di-
stribution of pressure to a symmetic, pro-
gressive wave. The results showed the freely
running wave then steepened and overturned.

Using a technique similar to that of Longuet
—Higgins and Cokelet[1], Faltinsen[2] solved
a nonlinear two dimensional free surface pro-
blem including a harmonically oscillating body.
The body intersected the free surface and was

constrained to move in the vertical direction.
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The numerical calculations were reduced by re-
presenting the flow far away from body as a di-
pole located at the center of the body. A for-
mula to calculate the exact force on the body
was presented. It was only necessary to know
the velocity protential on the positions of the
free surface and the wetted body surface.

A numerical method for the time simulation
of the nonlinear motions of two dimensional sur-
face piercing bodies of arbitrary shapes in
water of finite depth was presented by Vinje &
Brevig[3]. Periodicity in space was assumed.
At each time step, Cauchy’s integral theorem
was applied to calculate the complex potential
and its time derivative along the boundary. The
solution was stepped forward in time by inte-
grating the exact kinematic and dynamic free—
surface boundary conditions as well as the
equation of motion for the body. They solved
the problem of capsizing In beam seas, caused
by extreme waves.

Two —dimensional nonlinear free surface pro-
blems by a dipole (vortex and source) dis-
tribution method were solved by Baker, et al.
[4]. The resulting Fredholm integral equation of
the second kind was solved by iteration which
reduced storage and computing time.
Applications to breaking water waves over fi-
nite—bottom topography and interacting triads
of surface and interfacial waves were given.

The semi— Lagrangian method was extended

to vertically axisymmetric free surface flows by
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Dommermuth & Yue[5]. Since they sloved the
finite depth problem, a far field closure was 1im-
plemented by matching the linearized soultion
outside a radiation boundary. The intersection
line between the body and free surface was
treated by extending Lin’s[6] method.

The nonlinear hydrodynamics of an
axisymmetric body beneath the free surface in
the time domain were solved by Kang &
Troesch[7]. The free surface shape and the for-
ces acting on a sphere osciilating sinusoidally
with large amplitude are calculated and com-
pared with published results. The far field flow
away from the body is represented by a dipole
at the origin of the coordinate system similar to
Faltinsen{2]. This is only valid until waves ar-
rive. Waves generated by the numerical error at
the truncation boundary are not observed.

In this
axisymmetric flows by Kang and Troesh[7] is

paper, the method wused for
extended to three—dimensional free surface
flows. The free surface shape and the forces
acting on a three—dimensional body oscillating
sinusoidally with large amplitude are calculated
and compared with published results. When the
body motion is unknown, the time derivative of
the potential on the body is needed for the time
simulation. In two dimensions, Vinje & DBrevig
[8] derived the integral equation and the bound-
ary conditions for the time derivative of the po-
tential and stream function. However their for-
mulas may not be extended to three—di-
mensional problems. The three—dimensional
form is derived in this work. By using these for-
mula, the free surface shape and the equations
of motion are calculated simultaneously. The
Runge—Kutta 4—th order algorithm is em-
ployed in the time stepping scheme(See
Appendix 1).

Numerical calculations are performed for the
following cases :

(a) A body oscillating vertically near the free
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surface
(b) A body oscillating horizontally near the
free surface.

2. Mathematical Formulation

Consider an ideal fluid below the surface
given by F(x, t) =0, where x(x, y, 2) is a right
—handed coordinate system with z positive up-
wards and the origin located at the mean free
surface. The fluid is assumed to be inviscid and
incompressible and the flow is assumed to be ir-
rotational. The fluid domain is bounded with the
following surfaces, the free surface, Sr, the
body, Ss, and the surfaces at infinity, S-(Fig.1).
The surfaces, taken as a whole, will be denoted
as S. The governing equation and the boundary
conditions are as follows(L.onguet —Higgins &
Cokelet[1] and Dommermuth & Yue[5]) :

Laplace equation

V=0 in the fluid domain (D
Kinematic free surface condition

Dx

—= =V on F(x, 1)=0 2
Du ® (x, ) (2)
Dynamic free surface condition

D¢

1
B{-—gz+7v¢-v¢ on F(x, t)=0(3)

Body boundary condition
V¢ -n(x,)=V-n on
Radiation condition :

$—0 as | x | oo, t<o0 (5)

B(x, =0 (4)

Sp

Fig. 1 Coordinate System
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D 0
where D =( Y + V¢ - V) is the substantial

derivative, F(x, #) =0 is the function re-
presenting the free surface geometry at time t,
V includes both translational and rotational vel-
ocities, and B(x, 1) =0 is the function re-
presenting the body surface geometry at time t.
As an initial condition, ¢ is zero everywhere at
t=0.

The Green function, G(x;y), satisfies the fol-
lowing equation.
ViG(x:y) =—8(x—y) (6)
where x is the vector to the field point, y is the
vector to the source point, and 3(x—y) is the
Dirac delta function. Through the application of
Green’s second identity in the fluid domain, the

potential is given as
o 3
«x Vo V=L 2 —g 2 16as (1)
s on on

where ¢ is an included solid angle at x. In this
problem, a is 2z on the surface.

The Green function that satisfies Eq. (6) is
LA ()
R Ix-yl
where x is the position vector of a field point

G(x, y)=

and y is that of a source point.

The solution of Eq. (3) gives the potential ¢
on the free surface F(x, 1) =0. Also ¢, on the
body is known from the body boundary con-
dition, Eq.(4). The normal and tangential vel-
ocities on the free surface are needed to solve
Eq.(3). The normal velocity on the free surface
is a solution of Eq.(7). Details to calculate the
tangential velocity is given in the section 3. Co-
nsequently, a Fredholm integral equation of the
second kind on the body and of the first kind at
the free surface may be solved.

2.1 Far Field Condition
The far field condition is important in the no-

nlinear free surface problem. It can be resolved
by using periodic boundary conditions if the
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physical problem has spatial periodicity(Lo-
nguet—Higgins & Cokelet, [1]). Faltinsen[2]
and Kang[9] assumed that the behavior of the
potential is like that of a dipole at the origin of
the coordinate system.

A far field closure by matching the nonlinear
computational solution to a general linear sol-
ution of transient outgoing radiated waves was
used by Dommermuth & Yue[5]. This method
is mathematically complete.

A numerical radiation condition was posed so
as no waves reflected from the truncated sur-
face(Yang & Liu[10]). They found that the
usual one~dimensional Sommer —feld condition
gave reasonable results for an axisymmetric
cylinder heaving in the still water. Also it was
extended to 2—D case for the cylinder swaying
in the still water.

In this work. the far field closure simiar to
that used by Faltinsen[2] and Kang[9] is
posed. It is simple and it works well until waves
arrive at the truncation boundary.

At the far field, the velocity potential, ¢, and
the wave elevation, 5, are small from the radi-
ation condition, Eq.(5). For example,

plz=7)=¢(z=0)+7 zz—(ﬁ (z=0)+H.0.T. (9)

Assuming the behavior of the potential, ¢, is
like that of a dipole at the origin of the coordi-
nate system, it follows that as r—>oo

¢=(2=0)=0

¢ 1
o 2=~ 5

7=, % (2=0)di~ I },3 dt (10)
oz r

o¢ 1
p(z=n)~7 o (z=0)~ 5

where r is 2+ This is only valid until
waves arrive at the truncation boundary.

If we take a large value of r, the potential ¢
on the free surface must be relatively small to
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. . ]
the vertical velocity ; Therefore the effect
Z

of the potential at the far field can be neglected.
The far field condition is approximately satis-
fied by including the effect of the vertical vel-

d
ocity -? at the far field.
oz

3. Numerical Implementation

The body surface and the free surface are dis-
cretized into the small surface elements 4S;
using a bicubic B—spline algorithm(Barsky &
Greenberg[11]). The surfaces 4S;(x, y z) can
be represented by the parameters, u and v. Thus

1

xi(w, v)= 27 D7 b(u) Vi, jidi(v)

s=—2 t=—2

wi(w, v)= 27 27 b(w) Viee 1+di(v) (11)

s==2 t=~2

zi(u, V)= 2] D7 b(u) Vieg, ibi(v)

s=2 {=—2

for 0=u<] and 0<u<1
where b(u) and h(u) are the uniform cubic B
—spline basis functions and Vj; are vertices
(See Appendix 2). This allows the curved
panels.

The end condition should be imposed to get a
complete B—spline approximation. There are
several methods to impose end conditions ac-
cording to the geometrical characteristics(Bar-
sky[12]). The derivative of B-—spline interp-
olation at the end is set to get the tangent of
the given geometry if the tangent is known. If
the tangent is not known, the derivative at the
end is set to be the slope between two vertices
at the end obtained by using B—spline algor-
ithm.

o

The boundary values of ¢ and o are

assumed to be bilinear on the subdivided surface
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4S; as shown below.
d=ay+ qu+ @ v+ azuv

o

on =b+bu+bu+ buv (12)

for 0 =u<1 and 0<v<1

To evaluate the integrals over the segments
the two point Gaussian Quadrature formula
(Ferziger[13], Abramowitz & Stegun{14]) is
used when the field point is not a corner of the

pannel. In Eq. (7). G, is not singualr but G has

1 . L.
(E) type singularity in the transformed u—v

domain as the field point approaches the source
point. The singularity is integrable and can be
integrated by numerical quadrature. But since
an accurate integration of the singularity re-
quires a higher order quadrature formula, the
method following Ferziger[13] and
Dommermuth & Yue[5] can be used. The inte-

1
gral can be factored into the sum of the ( ft’_)

type singular part which is integrable analyti-
cally and the non—singular part which requires

numerical quadrature(Ferziger[13]).

1
3. 1 Removel of ( 1—2) type singularity
1 . .
In Eq.(7), G has (E) type singularity as the

1
field point approaches the source point. The ( E)

type singularity is integrable in the surface inte-

gration.

I:.UA&'

First, consider the induced potential at (fo, Zoos
hoo), which is one of the corners of panel, by the
source panel 4S;. Eq. (11) can alternatively be

1
o — 13
@ Rds (13)

represented by the following equations:
33 _
2= 27 20 fadv?

i=0 ;=0

Transactions of SNAK, Vol. 28, No. 1, April 1991
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3 3
y = Z Z giu'v? (14)

II

3 3
37 3 v

=0
By using Eqs.(14) and (40), dS and R can be

transformed and expanded into Taylor’s series
about u==0, v=0 as follows:

dS= | J| dudv
=\/EC-—72dudv
—{[(——)2+( )’+( ]><[(—)2
% (s _a_x_éx_ ' o
( )+( 1= (a av Jou ov
o= 02" ) dudo= Lt HOT dudw 15)
where
Jo= {(flogm _fuxgw)2+ (gwhm “"gmhw)z
+ (hiofor— hoi fio) )72 (16)
and

R={(x—x" )+ {y~y" )+ (2—2")}"
={(— fiou— fav- )+ (—gou—gav--)*
+( "hlou_hmv"')z}m

=/ Aur+ Buv+ Cv + H.O.T. (17)
where
A= fo+ g+
B=2(fiofor+ giogo t hiohar) (18)

C=ﬁn +gfn +h(2;1

The integral, I, can be divided into two parts.
One of them includes singular part in the in-
tegrand and the other does not include singular
part. After some manipulations of Eq. (13) by
using Egs. (14)~(18), the first integral I, be-
comes

dudv
=bhf, 1, (At + Bup+Cv?)'72 (19)

The integral, I, can be evaluated in closed
form as follows(Gradsteyn & Ryzhik[15], For-
bes[16]):

L= boJo[

1
7i In(2A+ B+ 2/A(A+ B+ 0))
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1

+ %ln(zc+ B+2J/C(A+B+C))

1
——Ja_—ln(B+2J/TC‘):| (20)

The second one can be described as follows:

L=, I;[ (bo+ b+ b+ byuv)J
R
_ boJy
JAE+ Buv+ C# ]dudv (21)

The integrand of the integral, L, does not
1 . .
have (E) type sigularity near u=0 and »=0.

Thus I can be obtained accurately even by the
two point Gaussian Quadratur. Similarly, the in-
tegral (13) can be obtained at the rest corners
(u=0, v=1), (vu=1, v=0), and (u=1, v=1).

To get the tangential velocity, the velocity po-
tential ¢ on the surfaces can be represented by
the bicubic B—spline (See Appendix 2). Even if
this representation is inconsistent with Eq. (12),
it gives smooth variation of the tangential vel-
ocity on the surface.

The derivatives ¢, and ¢, are obtained by dif-
ferentiating the potential with respective to u
and v respectively. Generally, the tangential
vector t,(fu, g h) along u—axis is not per-
pendicular to the vector t.(f+ gvw hv) along
v—axis. Therefore ~ Gram —Schmidt or-
thogonalization is needed to get the orthogonal
tangential vector on the surface.

4. Calculation of the Time Derivative of
Potential

. . . o
For the time simulation, 52: should be kno-

wn to calculate the forces and moments acting
on the body. In two dimensions Vinje & Brevig

[8] derived an integral equation and boundary
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.. a .
condition for a—q: by using the ¢ and ¥ formu-

lation. However, their results can not be
extended to the three — dimensional case. Since

a o
—( % ) can not be calculated by using the
on ot

. . o
given motion, a boundary value problem for ;; y

the time derivative of the potential in body fixed
coordinates, is derived as follows :

on
=n - —— * —
n Vet+Ve i

=n- [%V¢+<M - V)V¢]+ Ve - (wXn)

=1 [V2 49U Vel+ax Vel+Tp
* (@Xn)
o 8
=" (X 22
an(dt) (22)
which can be expressed as
a 3 av .
2 (2o (Erixr—axVn (29)

Following the nomenclature of Vinje &
8 a

Brevig[8], th t — 15( — 4V - V),

vig[8], the operator p is ( o Y )

V=Vi+wxr, Vris the translational velocity of
the center of mass of the body, r is the position
vector to the boundary from the center of mass
of the body, and w is the angular velocity vector
of the body. Eq.(23) is useful in that most quan-
tities of interest are expressed in the body coor-
dinate system rather than a fixed, inertial one.

Since V - V¢ satisfies Laplace equation, the
time derivative of the potential, — , can be cal-

culated by using Green’s theorem. The limiting
behavior of V-¥¢ at r—co can also be
checked, or

V-v=0(r2)=0(¢) as rooo (24)
T
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S
Applying Green’s theorem for d_¢t) instead of

¢ in Egs. (1), (6), and (7), the following
equation can be obtained :
3¢ 3  o¢ 8¢ 9
— = —(—=)—(—=)—]GdS 25
adt Is“an(dt) (dt)an]d (25)
R.H.S. of Eq. (23) may be represented as fol-

lows:
av &
n- ( g—: +9'><£—9><Mr)= 20 am  (26)
i=1
where n=(m, m, n;) and rxn=(n, ns n).

S
The time derivative of the potential, —Lﬁ , can
. dit
be decomposed as follows:

8 _ v 3 o

A 27
& <2%a T @7

S¢n

3¢
The auxiliary terms, —9 and — , are sol-
dt dt

utions of the following boundary value pro-

blems:
9 O, 9 O,
é;(a)—nn and 8_n(d_t)_0
on B(x, 1)=0 (28)
and
3¢ 31 1
= =0 and b =V V¢ EV¢ V¢—gz
on F(x, 1)=0 (29)

The time derivative of the potential on the

b .
free surface, i;, is calculated by using sol-

utions of the integral equation. Eq.(7).
5. The Pressures and Forces

Once the time derivative of the potential is
known, the pressures are found by applying
Bernoulli’s equation. Bernoulli’s Equation is de-
rived for the variables relative to an inertial co-
ordinate system. However, it is convenient for

the purpose of solving the boundary value pro-
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blem to use body {ixed coordinates. Under these
circumstances, spatial differentiation is in-
variant with coordinate transformation, but
temporal differentiation is not. Bernoulli’s
equation can be expressed as

— —8£ +V - v¢—-;—v¢ - Vo—gz (30)

i

8¢ . .
The term d_q; in the above equation is calcu-

lated by Eq.(27). With the pressure known, the
force and moment become
F=mV
= [ ndS~— meic
8¢ 1
=‘*P.£fﬂ( T -V v+ EV¢ + Vé+gz)
dS—mgk (31)
M= [[pr xndS.

For three—dimensional bodies the force and
moment are rearranged as follows:

F=F\+F.+ (08 —mg)k (32)

M=M+M,
where V in Eq. (32) is the displaced volume of
the body,

Fi= P.gBE :[t ds,

Ez="PJ!E(Y. . v¢-—é—v¢ - Ve¢)dS,  (33)
)

M=—p[[rxn % dS, and
B

M= —pfJrxn(Y - Vg3 V4 - V$)ds
B

6. Numerical Calculation

6. 1 Heave motion
To demonstrate the usefulness of the tech-

nique shown in the previous section, the force

KREEMRBERCE $28% 15 19914 45

acting on a sphere oscillating beneath the free
surface is determined. The motion of a sphere is
given by z=—h+a cos wt for t greater than
zero. Initially the potential and wave elevation
at the free surface are zero.

The number of elements on the body is 200
and that on the free surface is 40x40. The
truncation boundary is the position from the ori-
gin of the cordinate system where waves
reaches in four periods of the body motion
(—-16<x/R<16, —16<y/R<16). So, it de-
pends on the group velocity of wave. Even
spacing is used on the body and free surface.
The typical time interval is approximately 0.05
period of motion for the time simulation of the
sphere.

The mean depth of immersion for the center
of the sphere, h, is h/R=2.0. The time history
of the force acting on the oscillating sphere with
a large ratio of motion amplitude, g, to radius,
R, (¢/R=0.5) was calculated and is compared
with the results of the axisymmetric free sur-
face problem (Kang & Troesch[7]) in Fig. 2.
They show good agreement. In the reference
[7], the calculation results for the sphere oscil-

N Z-Force

NN
VTV

3-D — — — — Axisym,

)

.FORCE (F

.

‘.

Fig. 2 Comparison of Heave Force Acting on the
Sphere by 3—D and Axisymmetric Solutions
(a/R=0.5, h/R=2.0, KR=1.0)
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lating vertically with small amplitude showed
good agreement with those given by Ferrant
[17]. This means the 3—D algorithm in this
paper works well.

In Fig.3, the time history of force components
which consist of F and F; is shown. The forces
are nondimensionalized by egKaR? where K is
a wave number, w’/g, and g is the gravitational
constant and the time ¢ is nondimensionalized
by +R/g. The harmonic distributions of the
total force are shown in Table 1. The second
order amplitude of the force is 6.5% of the first

. Z-Force

Pl

1)

FORCE (F

.
3

S

—— Total force — — F1

Fig. 3 Time History of the Heave Force Com-
ponents Acting on the Heaving Sphere
(a/R=0.5, h/R=2.0, KR=1.0)

Table 1 Harmonic Distributions of the Total Force
for Heave Motion
(a/R=0.5, h/R=2.0, KR=1.0)

Heave Force F/pgKaR?

I-TH COS SIN

0 —0.2850707E—01 0.0000000E+00
1 0.1843049E+01 0.2665849E+00
2 —0.1033978E+00 0.6141333E-01
3 0.6449880E—01 0.8355246E—02
4 —0.5114811E—02 —0.1019468E—01
5

0.2418429E—01 0.2957444E—02
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Fig. 4 Wave Profiles for Heave Motion
(a/R=05, h/R=2.0, KR=1.0)

Transactions of SNAK, Vol. 28, No. 1, April 1991



A Numerical Simulation of Three —Dimensional Nonlinear Free Surface Flows 47

order one. And the mean force is 1.5% of the
first order. Fig. 4 shows the three dimensional
wave profiles at four different times. All the
wave profiles are exaggerated by factor of 50 in
z—direction. In the figures T is a period of the

motion.

6. 2 Surge motion

The surge motion of the sphere is given by
x=a cos wl for t greater than zero. The mean
depth of immersion for the center of the sphere
is B/R=2.0. The amplitudes of the motion is a/

X-Force

inivivive
i

Total force — — Fl -—c-ceu- F2

. FORCE (F’)

Fig. 5 Time History of the Surge Force Com-
ponents Acting on the Surging Sphere
(a/R=0.5, h/R=2.0, KR=1.0)

F Z-Force

— Total force — — F1 ====-nm- F2

Fig. 6 Time History of the Heave Force Com-
ponents Acting on the Surging Sphere
(a/R=0.5, h/R=2.0, KR=1.0)
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R=0.5. The nondimensionalized wave number,
KR, is equal to 1.0.

The time histories of the forces acting on the
sphere are shown in Fig. 5—6. The harmonic di-
stributions of the horizontal and vertical forces
are given in Table 2. The three dimensional
wave profiles at 4 different times are shown in
Fig. 7.

In case of surge motion, the first order surge
force is dominant unlike the heave motion. How-
ever nonlinear effects appear only in the verti-
cal force. The first order vertical force is negli-
gible, but the mean and second order vertical fo-
rces are not. The mean vertical force is im-
portant for a submerged body to keep a con
stant depth.

Table 2 Harmonic Distributions of the Total Force
for Surge Motion
(a/R=0.5, h/R=2.0, KR=1.0)

Surge Force F/ogKaR?

I-TH COS SIN

0 —0.1308621E—02 0.0000000E +00
1 0.1927655E+01 0.1237885E+ 00
2 0.2138726E—03 —0.1002954E — 02
3 0.3005543E—01 0.1583521E—02
4 —0.1381397E—04 —0.4408678E—03
5 0.2590462E—01 —0.4266882E —03

Heave Force F/ogKaR?

I-TH Cos SIN

0  —0.1274143E—01  0.0000000E +00
1 —0.4001656E—03 0.4211906E —04
2 0.2037149E—-01  0.2325045E—01
3 —0.3133378E—-03 0.8355940E — 04
4 —0.3846344E—-03 —0.2575103E—03
5 —0.2204935E—-03 0.9557988E — 04
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Fig. 7 Wave Profiles for Surge Motion
{a/R=0.5, h/R=2.0, KR=1.0)
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6.3 Advancing motion

Saw-tooth instability is not observed in the
computation of the oscillatory motions. But it
seems to be inevitable and break down the nu-
merical time stepping in case of advancing
sphere. It may be due 1o short waves generated
by the body. The length of short waves is less
than the mesh size in this computation. The nu-
merical error does not die out but was accumu-
lated continuously. Eventually the numerical
scheme breaks down. Thus a simple numerical
filtering scheme are tried to avoid break down,
but still does not work well, Fig. 8 shows the
wave profile before breakdown.

All the caleulations were carried out on
CRAY?2S and each solution time was appro-
ximately 50,000 seconds.

7. Conclusion

The nonlinear hydrodynamics of a three—di-
mensional body beneath the free surface is
solved in the time domain. The free surface
shape and forces acting on a sphere advancing
and oscillating sinusoidally with large amplitude
are calculated and compared with published re-

Fig. 8 Wave Profile Generated by an Advancing
Sphere( U = 2.557m/sec for 2557 < ¢,
U=tfor 0 < 1< 2557,
h/R = 2.0, t = 3.6sec)
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sults. The far filed flow away from the body Is
represented by a three dimensional dipole at the
origin of the coordinate system. This is only
valid untll waves arrive at the truncation
boundary. Any numerical instability was not ob-
served in the computation of the oscillatory mo-
t.ons. But a simple numerical filtering scheme
was used to avoid breakdown in computation of
advancing body. The integral equation and
boundary conditions to calculate the time de-
rivative of the potential on the body are derived.
By using these formulas, the free surface shape
and forces are calculated simultaneously. A
Runge—Kutta 4th order scheme is employed in
the solution method. Nonlinear effects on the os-
cillating body submerged in infinite water depth

are studied.
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Appendix 1. The 4th order Runge—Kutta me-
thod [13]

When y° = f(x, ) is nonlinear, this can be
solved by Runge—Kutta methods. The most
commonly used Runge—Kutta methods are
fourth order accurate and there are a number
of these. The best known such method (some-
times called the fourth order Runge—Kutta me-
thod) is

. h
Yo+iz = % + "z’f(xn’ )
(Euler predictor—half step)
- h .
Yotz = %+ Ef(xn‘H/Zy yn+l/2)

(Backward Euler corrector— half step)

ase

¥oat1 = % + hi(xasin, Yarr2) (34)
(Midpoint rule predictor—full step)

h .
Yat1 = Do + g[f(xm W) + 2f(Xar1zs Yavrs2)

+ 2f(xn+1/z, y‘;+1/z) + f(xn-Hy y"n'+1):|
(Simpson’s rule corrector —full step)

Looking at this method one can see that de-

C. G. Kang and L. Y. Gong

rivation of such methods is not easy task. An
analysis of it for the general case is also diffi-
cult. It is not too difficult to analyze, however,
when apphed to ¥y’ =ay. We find that

(ah)? | (ah)®  {ah)!
3 + 5 + 24 Yy (35)

so that method is indeed fourth order accurate
and the error is of order (ah)®/120. It is inter-
esting to note that the steps that comprise this

yn+1: (1+dh+

method are of order one, one, two, and four, re-
pectively, and the method has inherited the ac-

curacy of the final corrector.

Appendix 2. Parametric Uniform B-—spline
Surface Representation {11]

A B-—spline surface is defined in a piecewise
manner, where each piece is a segment of the
surface called a surface patch. The entire sur-
face is a mosaic of these patches sewn together
with appropriate continuity (Fig. 9). A bicubic
B —spline surface consists of patches which are
cubic in each of the two parametric directions
and it is everywhere continuous along with its
first and second derivative vectors, in both di-
rections. This continuity constraint reduces to
requiring continuity of the first and second par-

ametric derivative vectors across the borders of

Fig. 9 A B—Spline Surface is a Mosaic of Surface
Patches.
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adjacent patches. The B—spline surface is de-
fined by, but does not interpolate, a set of points
called control vertices. These control vertices
form a two—dimensional array, Although the
vertices actually exist in three —dimensional x —
y—z space, they are organized as a two—di-
mensional graph. Each vertex is either an in-
terior vertex or a boundary vertex. This notion
can be formalized quite elegantly by drawing on
graph theory. The set of contro! vertices can be
considered as a graph V, E whose vertices form
the set
V={Vjli=0,-m;j=0,-, n}
and with the set of edges
E={(V;, Vi.;) | i=0, -, m—1;j=0, -, n}
U{( Vi, Virr ) 1i=0, -+, m—1; j=0, -, n}

The interior vertices are the vertices Vi,
where l S i<m—1land 1 << n—1, and the
boundary vertices are Vg, j= 0, -, n—1, V,,, i
=0, -, m—1, Voj, j=1, -, n, and Vg, 1 = 1,
---, m. To emphasize this graph—theoretic in-
terpretation, the term control graph to describe
the set of control vertices is chosen (Fig. 10). A
major advantage of the B—spline formulation is
that it is a local representation. A bicubic B—
spline surface patch is controlled by 16 control

vertices and is unaffected by all other control

A Souadary
con:irol veriex

Fig. 10 A B—Spline Control Graph
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vertices.

Conversely, a given control vertex exerts in-
fluence over only 16 surface patches and has no
effect on the remaining patches. This means
that the effects of moving a control vertex are
limited to 16 patches. A point on the (i, j)th
uniform bicubic B—spline surface patch is a
weighted average of the 16 vertices Vii, ..,
r=—2,—-1,0,1and s= —2, —1, 0, 1. The
mathematical formulation for the patch @;;
(u, v) is then

1 1
Qij(uv U) =r=2_z sgz&rs(uy 'U) ‘/H'r, +8
for0<uv=<l (36)
The set of bivariate uniform basis functions is

the tensor product of the set of univariate uni-
form basis functions. That is,

MrS(uy U) = br(U)bs(U)
forr=-2,-1,0,1, and
=-2,—-1,0,1 (37)

Thus, the formulation for the patch @;(u, v)

can be rewritten as

Qij(u1 U) = riz ’izbr(u) ‘/H-r, j+sbs(v)

for0<y v<1 (38)
1 1 b
[} v 10 ] 10 M 10 . i
by () ot v b

Fig. 11 Graphs of the Univariate Uniform Cubic
B~ Spline Basis Functions
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The univariate uniform cubic B—spline basis
functions are graphed in Fig. 11, and can be

written in matrix form as

[b-2(w) b-1(u) b(u) b(u)]

-1 3 -3 1
3 -6 3 0

= [«’v®u!]1/6 _3 0 3 o (39)
‘1 4 1 0

Appendix 3 Calculation of the Surface Integral
and the Normal Vector

The surface integral can be calculated as fol-
lows (Kaplan, [18]) :

C.G.Kang and L. Y. Gong

J! H(x, 3 2) do

=fsf H[ f(4, v), g(y, v), h(y, v)] /EG—F*dudv
uv (40)
where

x = fly, v), y=g(u, v), 2= h(xy, v)
Pr=xi+5j+ 2k
Ezzxvi'i_yvi_i—zvk
ox Iy az
E= |P|t=(Z) RAAY = 2
l—ll (au) +(au) +(au)

oz o
ou v

9y 3y
Ju v

o0z 0z

F= EI'EZ - u v

= 2 — ér_z _a_yz _a_z_z
G= IR 1= (Zy 4 (2y 4 (&)

The normal vector on the surface S is calcu-
lated by using the following formula.
P, X P,
| Py X Py |

E:

(41)
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