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Maritime transport is now regarded as one of the main contributors to global climate change by virtue of its CO2 emissions. 
Meanwhile, slow steaming, i.e., slower ship speed, has become a common practice in the maritime industry so as to lower CO2 
emissions and reduce bunker fuel consumption. The practice raised various operational decision issues in terms of shipping compa-
nies: how much ship speed is, how much to bunker the fuel, and at which port to bunker. In this context, this study addresses 
an operation problem in a shipping companies, which is the problem of determining the ship speed, bunkering ports, and bunkering 
amount at the ports over a given ship route to minimize the bunker fuel and ship time costs as well as the carbon tax which 
is a regulatory measure aiming at reducing CO2 emissions. The ship time cost is included in the problem because slow steaming 
increases transit times, which implies increased in-transit inventory costs in terms of shippers. We formulate the problem as 
a nonlinear lot-sizing model and suggest a Lagrangian heuristic to solve the problem. The performance of the heuristic algorithm 
is evaluated using the data obtained from reliable sources. Although the problem is an operational problem, the heuristic algorithm 
is used to address various strategic issues facing shipping companies, including the effects of bunker prices, carbon taxes, and 
ship time costs on the ship speed, bunkering amount and number of bunkering ports. For this, we conduct sensitivity analyses 
of these factors and finally discuss study findings. 
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1. Introduction1)

Slow steaming, i.e., slower ship speed, has now become 
a common practice in the maritime industry to save bunker 
cost, which is the largest among transportation costs occupy-
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ing about 35 per cent of the total freight rate [15]. It is esti-
mated that ocean carriers can save $3 billion per year through 
slow steaming [9]. Slow steaming can also change bunkering 
ports due to reduced bunker consumption and fluctuating 
bunker prices, and it can lower CO2 emissions due to lowered 
consumption of the bunker, which is a fossil fuel. On the 
contrary, slow steaming increases transit times, which im-
plies increased in-transit inventory costs in terms of shippers. 
Hahm [3] demonstrated the relationship between CO2 emis-
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sions and effective operation of a system.  
In this context, the current paper aims to contribute the 

practice by investigating the joint ship speed and bunkering 
decision (JSB) problem. Here, bunkering is the storage of 
bunker fuels in the fuel tank in a ship, i.e., refueling the 
ship. A number of studies have recently considered ship 
speed optimization problems, among which research on the 
JSB problem is very recently receiving a lot of interests from 
the academia after Kim et al. [6]’s study. See Wang et al. 
[16] and Kim and Kim [4] for the ship speed optimization 
problem.  

To the best of our knowledge, Kim et al. [6] first intro-
duced the JSB problem by assuming same speed during a 
voyage, formulated it as a nonlinear programming model and 
suggested an epsilon-optimal algorithm. Yao et al. [17] con-
sidered a more general JSB problem by taking into account 
time window restrictions and suggested a heuristic based on 
linearization of the nonlinear model. Kim [5] considered a 
type of JSB problem by relaxing the same speed assumption 
made in Kim et al. [6] and suggested a Lagrangian heuristic 
algorithm. Sheng et al. [13] considered a JSB problem with 
both bunker prices and consumption uncertainties, formulated 
it as a robust optimization model, and suggested a heuristic 
algorithm by modifying Yao et al. [17]’s heuristic algorithm. 
Nielsen et al. [8] revisited Yao et al. [17]’s problem and 
modified Yao et al. [17]’s heuristic algorithm. Sheng et al. 
[12] suggested a (s, S) policy-inventory control model for 
a JSB problem with both bunker prices and consumption 
uncertainties. Meng et al. [7] dealt with a type of JSB problem 
for a tramp ship considering the ship routing and suggested 
a branch-and-price algorithm. 

Our paper extends the work of Kim [5] who assumed all 
the bunker fuel from the immediately previous bunkering 
port to be exhausted as soon as the ship arrives at the bunker-
ing port. Our paper relaxes the assumption made in Kim 
[5] and formulates the problem as a lot-sizing model. Our 
paper suggests a Lagrangian heuristic to solve the problem 
and the applicability of the heuristic is evaluated by a case 
study with the data from the literature and a shipping Korean 
company. 

The remainder of this paper is organized as follows. The 
next section describes the JSB problem considered in our 
paper and presents a nonlinear programming model. Section 
3 presents a Lagrangian heuristic algorithm and Section 4 
evaluates the performance of the heuristic and analyzes the 
effects of bunker prices, ship time costs, and carbon taxes. 

Section 5 concludes the paper with a short summary and 
discussions on possible extensions.

2. Problem Description

In this section, we define the JSB problem considered in 
our paper by formulating it as a nonlinear programming 
model. The JSB problem considered in this paper is to de-
termine the ship speed, bunkering ports, and the bunkering 
amount through ports along a given route. Here, bunkering 
port is the port at which the ship is refueled (bunkered) and 
bunkering amount is the amount of bunker fuels refueled 
in the fuel tank in the ship. There is a ship navigating a 
shipping route, which is assumed to be known in advance. 
The ship makes a round trip, i.e., the first calling port of 
the ship and the last calling port are identical. When the 
ship arrives at a port, the bunker remaining at the fuel tank 
is the bunker just after departing the immediately previous 
port along the route minus the bunker amount consumed dur-
ing a voyage from the previous port to the current port. There 
is a limit on the remaining bunker amount due to the capacity 
of the fuel tank in the ship, i.e., the remaining bunker cannot 
exceed the capacity. The ship speed should be within a range 
from a minimum speed   to a maximum speed  . We 
assume without loss of generality that the ship spends no 
time at any port although it makes port calls. 

The objective of the JSB problem considered in our paper 
is to minimize the bunker purchase cost, ship time cost, and 
the carbon tax associated with the ship’s CO2 emissions. For 
a clear definition of the costs and the nonlinear programming 
model, we summarize the notations as follows. In the nota-
tions, tCO2 stands for a ton of CO2 emissions. 

Parameters
 daily ship time cost [US$/day]
 unit CO2 emissions by fuel consumption of the ship 

[tCO2/bunker ton]
 daily bunker fuel consumption rate at a given speed 

of the ship [bunker ton/day]
 nautical distance from port i to i+1 [nautical mile]
 number of ports on a ship route
 unit bunker purchase cost at port i [US$/ton]
 capacity of bunker tank of the ship [ton]
 unit carbon tax on CO2 emissions [US$/tCO2]
 given speed of the ship [knot]
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 minimum speed of the ship [knot]
 maximum speed of the ship [knot]

Decision variables
 remaining bunker amount in the fuel tank just after 

arriving at port i [ton]
 speed of the ship from port i to i+1 [knot]
 bunkering amount at port i [ton]

The bunker purchase cost is the cost of buying bunker 
fuel at port i which is expressed as its unit cost multiplied 
by the amount of bunker fuel purchased,  . The carbon 
tax is an environmental tax, which is implemented by taxing 
the amount of CO2 emissions from fuel consumption for the 
purpose of reducing CO2 emissions. The tax is calculated 
by considering a unit carbon tax and the amount of CO2 

emissions generated from bunker fuel consumed while sai-
ling from port i to i+1. To obtain the bunker consumption, 
we adopt a well-known function for the bunker consumption 
and speed relationship [10, 11],   ⋅

 [ton/day]. As 
a result, the carbon tax for the bunker consumption while 
sailing from port i to i+1 is ⋅⋅

. The ship 
time cost used in the model includes the cost of chartering 
the ship, the ship operating cost, and the time cost of con-
tainers on the ship. The ship operating cost is maintenance 
costs, and crew wages, among others, while the time cost 
of containers is the time value of cargoes loaded in the ship. 
The daily ship time cost during a voyage is represented by 
the unit time cost of ship multiplied by the sailing time, 
⋅ .

Based on the above problem definition and cost function, 
we formulate the JSB problem as a nonlinear programming 
model as follows.

[P1] Minimize 
  

 

 
  

 

⋅






  

 





    subject to

       





 for     ⋯  (1)

    ≤  for     ⋯  (2)
   ≤  ≤  for     ⋯  (3)
    ≥  for     ⋯  (4)

The objective function to be minimized is the sum of 

bunker fuel purchase cost, the carbon tax imposed on CO2 
emissions, and the time cost of a ship. Constraint (1) repre-
sents the flow conservation of the bunker amount remaining 
at the fuel tank of the ship. Constraint (2) represents that 
the bunkering amount at a port plus the remaining at the 
fuel tank cannot exceed the fuel tank capacity of the ship. 
Constraint (3) guarantees that the ship speed should range 
between the minimum and maximum speeds. Constraint (4) 
is restrictions on the decision variables. 

3. Solution Algorithm

The solution approach to problem [P1] employs a Lan-
grangian relaxation method, which is commonly used to con-
vert a hard combinatorial problem into a relatively easy prob-
lem by dualizing (relaxing) sets of complicated constraints. 
First, the original model [P1] is reformulated as another non-
linear program so that the Lagrangian relaxation method can 
be applied more effectively. Second, a Lagrangian lower boun-
ding and upper bounding schemes are presented based on 
the reformulation and lastly the Lagrangian relaxation heu-
ristic algorithm is suggested. 

The original model [P1] is reformulated as another model 
by adding 

     





     for     ⋯  (5)

Then, the objective function and constraint (1) respectively 
become 


  

 

 
  

 

⋅ 
  

 





          for     ⋯  (1.1)

In addition, to obtain a better lower bound, we add the 
following constraints

  ≤   





 for     ⋯  (1.2)

  ≥   





 for     ⋯  (1.3)

Adding the above constraints (1.2) and (1.3) does not af-
fect the optimal solution since : 
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<Figure 1> A Shipping Route with the Most Calling Ports in Hyundai Merchant Marine

  





 ≤      







     





 ≤   







due to constraint (3). As a result, the integer program [P1] 
can be reformulated as follows. 

[P2] Minimize 
  

 

 
  

 

⋅ 
  

 





    subject to (1.1), (1.2), (1.3), (2), (3), (5), and 

     ≥      for     ⋯   (4.1)

The Lagrangian relaxation approach used in this paper is 
based on the dualization of constraint (5) in the reformulation 
[P2] with Lagrangian multiplier  ≥ . Then, the resulting 
relaxed problem becomes 

[LR] Minimize

   

  

  


 

  

  

⋅


 
  

  







 
  

  





    subject to (1.1), (1.2), (1.3), (2), (3), (4.1) and

   ≥           for     ⋯  (6)

The relaxed model can be decomposed into two in-
dependent subproblems as follows :

[SP1] Minimize 
  

 

 
  

 

⋅   

      subject to (1.1), (1.2), (1.3), (2), (4.1), and (6)

[SP2] Minimize 
  

 








  

 





      subject to (3) and (6)

Subproblem [SP1] is a linear program and hence it can 
be easily solved using a commercial optimization tool such 
as CPLEX. On the other hand, it is not difficult to know 
that subproblem [SP2] can be decomposed into mutually in-
dependent n−1 subproblems [SP2 i] for i = 1, 2, …, n−1. 
The optimal solution of [SP2 i] can be obtained using the 
following property. 

Property 1. There is the optimal speed for [SP2i] defined as 


 










   
′ 


′    ≤ 

′≤ 

   
′ 

 for     ⋯ 

(7)

 where 
′ ⋅ 
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Proof. Let   be the objective function of [SP2i]. The first-or-
der derivative of   with respect to   becomes




 




 




⋅
 

which results in the speed giving the minimum value of   
as


′ 




⋅

The objective function of   is convex because







 




 





≥ 

Then, we can obtain equation (7) because the optimum speed 
should satisfy constraint (3). 

To find a better lower bound, we need to find better values 
for Lagrangian multiplier  . In the following, we present 
a solution method for the following Lagrangian dual problem 
[LD] to find the best multiplier.

[LD ] Maximize   subject to (6) 

where   is an optimal solution value of [LR] and   
denotes the vector for the Lagrangian multiplier.

The Lagrangian multiplier is updated using the subgradient 
optimization algorithm. Subgradient optimization algorithm 
generates a sequence of the Lagrangian multiplier using the 
following rule :


  

 
  for     ⋯ 

where 
 denotes the value of the Lagrangian multiplier 

at iteration m. At iteration m, subgradient 
 for Lagrangian 

multiplier   is determined by


  







 for     ⋯ 

where 
 and 

 are the optimal solution of [LR] prob-

lem obtained at iteration m . A positive scalar step size  
at iteration m  is 

  

 

where  ≤  is a positive scalar,   is the best feasible 
solution value of problem [P] and ∙  denotes the norm 
of vector ∙. The value for  is set to be equal to 2 initially 
and is halved if the lower bound has not been improved in 
a predetermined number of iterations T. 

In the upper bounding procedure, [SP1] is resolved after 
setting 


  






     for     ⋯ 

so at to obtain a feasible solution with respect to constraint (5). 

We now present the Lagrangian heuristic proposed in this 
paper, which is terminated when iteration count m  reaches 
a predetermined limit M . 

Procedure 1 : (Lagrangian heuristic algorithm)
Step 1 : Set m = 1 and    for i = 1, 2, …, n−1. Let 

the best upper and best lower bounds be an arbitrary 
large number and 0, respectively.

Step 2 : Obtain the solution of [LR] by solving [SP1] and 
[SP2] using the methods described above.

Step 3 : Obtain a new lower bound by computing the ob-
jective function value using the solution of [LR]. 
Update the best lower bound and its solution once 
the new lower bound is greater than the best lower 
bound. 

Step 4 : Obtain a new upper bound using the method de-
scribed earlier and update the best upper bound and 
its solution once the obtained upper bound is less 
than the best upper bound. Stop if the best upper 
bound equals the best lower bound.

Step 5 : Set m  = m+1, If m  > M , stop. Otherwise, update 
the multiplier using the subgradient method de-
scribed earlier and go to Step 2.

4. Numerical Studies

We applied the proposed Lagrangian heuristic to applica-
tions taken from various reliable sources. We considered a 
shipping route in <Figure 1> taken from the website of 
Hyundai Merchant Marine (http://www.hmm21.com/), which 
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is the route with the most calling ports in the company. In 
the route, the port of Hong Kong was the first as well as 
the last port, i.e., the sequence of the voyage was as follows: 

Hong Kong →
353

 Kaohsiung →
925

 Busan →
363

 Kobe →
372

 Tokyo →
7723

 

Balboa →
19

 Panama Canal →
53

 Manzanillo →
3007

 Miami →
342

 Jack-

sonville →
152

 Savannah →
97

 Charleston →
652

 New York →
3409

 Rotter-

dam →
262

 Bremerhaven →
308

 Felixstowe →
3347

 New York →
309

 Nor-

folk →
469

 Charleston →
3348

 Manzanillo →
53

 Panama Canal →
19

 Bal-

boa →
2942

 Los Angeles →
384

 Oakland →
4534

 Tokyo →
372

 Kobe →
1406

Chiwan →
19

 Hong Kong. They are numbered as 1, 2, …, 28,
respectively and the numbers under the arrows are nautical 
mile between ports, taken from the website of Dataloy 
(http://www.dataloy.com/). 

Bunker fuel prices (US$ per ton) for Hong Kong, Kaohsiung, 
Busan, Tokyo, Balboa, Panama Canal, Miami, Jacksonville, 
Savannah, Charleston, New York, Rotterdam, Bremerhaven, 
Norfolk, Los Angeles, and Oakland were obtained from the 
website of Netpas (http://www.Netpas.net/) and found to be 
201, 213.5, 202, 209, 173.5, 173.5, 239, 251.75, 239, 235, 
178, 157, 207.5, 198, 169, and 337 for the respective ports. 
Those for the other ports could not be found from the website 
and hence were set at an arbitrarily big number by conjectur-
ing that bunkering at the ports is not commonly taken place 
in real practice. 

The carrying capacity of the ship used in this test K was 
10,000 TEU with fuel tank capacity 10,329.9 ton adopted 
from 10,900 m3, the tank size of 9,178 TEU ship, 1.053 
bunker ton/m3, and the advice of an operator in a shipping 
company that 90% of the capacity is bunkered in real practice. 
The daily bunker consumption rate was set to    
 and the given speed was set to     ac-
cording to Tran [14]. The minimum and maximum speeds 
were set at 16 knots and 30 knots, respectively. Following 
Corbett et al. [1], CO2 emissions were set at 3.17 tCO2 per 
bunker ton. The daily ship time cost was obtained by adding 
the daily charter rate, the ship operating cost, and the time 
of containers on the ship. The vessel charter rate was set 
at   according to Tran [14], the vessel operating 
cost was set at , which is an equation 
of a simple linear regression of the data in Gkonis and 
Psaraftis [2], the time cost of a container is US$ 40 per day 
and 3,000 TEU containers are on the ship in average.

The Lagrangian heuristic requires specific values for sev-
eral parameters. After a preliminary experiment, the parame-

ters in these experiments are set as follows : the iteration 
limits M  and T were set to 1,000 and 50, respectively. The 
initial remaining bunker amount in the tank was set to zero 
without loss of generality. The subproblem [SP1] was solved 
using CPLEX version 12.6.1 and the algorithm tested in this 
paper is coded in C and run on a PC with a Pentium process-
or operating at 1.73GHz. The evaluation of the Lagrangian 
heuristic’s performance and scenario analyses are made un-
der variable bunker prices, container time values, and carbon 
taxes. In the test, the bunker price was varied by multiplying 
the bunker prices in the case data by the bunker price multi-
plier ranging from 0.5 to 2.5, the container time value was 
varied from 25$ per TEU to 125, and the carbon tax was 
varied from zero to 400$ per tCO2. 

We evaluate the performance of the Lagrangian heuristic 
summarized in <Table 1>. We can see from <Table 1> that 
the heuristic can solve quickly all problem instances within 
0.5 seconds. The gap between LB (lower bound) and UB 
(upper bound) is 0% for many cases and less than 0.06% 
for the others. It can be found that the gap slightly becomes 
bigger along with the bunker price and the CPU time also 
slightly becomes reduced as the carbon tax and container 
time value increase, but these effects on the performance 
are negligible. Therefore, it can be argued that the heuristic 
is a viable tool for determining the ship speed and bunkering 
ports in shipping firms. 

<Table 1> Performance of the Lagrangian Heuristic

LB UB Gap(%)* CPU 
second

(a) Bunker price multiplier
0.5 10480051.83 10480051.83 0.00 0.05
1.0 12748712.76 12749739.47 0.01 0.25
1.5 14555105.53 14560290.83 0.04 0.31
2.0 16020070.53 16026809.11 0.04 0.28
2.5 17256359.96 17265761.44 0.05 0.25

(b) Container time value
0 12748712.76 12749739.47 0.01 0.26

100 18017701.17 18021639.38 0.02 0.29
200 21282176.30 21285696.77 0.02 0.23
300 23799578.71 23799578.71 0.00 0.03
400 26192174.69 26192174.69 0.00 0.03

(c) Carbon tax (US$/tCO2)
25 10315601.41 10317741.24 0.02 0.28
50 14253789.57 14254154.08 0.00 0.23
75 17929663.31 17929663.31 0.00 0.03

100 21600392.48 21600392.48 0.00 0.03
125 25271121.65 25271121.65 0.00 0.03

*(UB-LB)/LB․100(%).
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 <Table 2> Best Bunkering and Ship Speed Strategies at 

Different Bunker Prices

Bunker price 
multiplier

Bunkering amount 
(1,000 ton)

Ship speed
(knots)

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

Hong Kong 7.3 6.1 4.6 3.9 3.3

30.0

27.4
24.0

21.8 20.2
Kaohsiung

Busan
Kobe
Tokyo 23.8
Balboa 5.8 5.4 4.0 3.4 2.9

28.8

25.5 27.3 28.1
Panama 25.2

22.9

22.4
Manzanillo 25.0

21.2

Miami
25.2Jacksonville

Savannah
Charleston 25.1
New York 25.0
Rotterdam 10.3 10.3 10.1 8.3 7.2

29.1 26.0

23.7
22.0

Bremerhaven
Felixstowe 29.0 25.8
New York

29.1 26.0
Norfolk

Charleston 29.0 26.2
Manzanillo

29.1 26.0
22.4

Panama 27.3 28.1
Balboa 28.9 26.1

23.7 22.0
Los Angeles 3.1 2.2

29.1 26.0
Oakland
Tokyo

29.0
25.9

Kobe
26.0

Chiwan 29.1 27.3 28.1
Total bunkering 

amount 26.5 24.0 18.7 15.6 13.4

<Table 3> Best Bunkering and Ship Speed Strategies at 

Different Container Time Values

Container 
time value

($/day/TEU)

Bunkering amount 
(1,000 ton)

Ship speed
(knots)

25 50 75 100 125 25 50 75 100 125

Hong Kong 5.0 6.9 7.3 7.3 7.3 24.7 29.0 30 30 30
Kaohsiung

Busan
Kobe
Tokyo 24.8
Balboa 4.4 5.8 5.8 5.8 5.8 28.7 30
Panama 26.0

Manzanillo
Miami

Jacksonville
Savannah
Charleston
New York 25.9
Rotterdam 10.3 10.3 10.3 10.3 10.3 26.4

Bremerhaven 26.5
Felixstowe 26.4
New York 26.5

Norfolk 26.4
Charleston 26.3
Manzanillo 26.5

Panama 28.7
Balboa 26.3

Los Angeles 3.1 3.1 3.1 3.1 26.4
Oakland 26.3
Tokyo 26.4
Kobe 26.3

Chiwan 28.7
Total bunkering 

amount 19.7 26.1 26.5 26.5 26.5

We next study the effect of variable bunker price, which 
is summarized in <Table 2>. We can see from <Table 2> 
that different bunker prices can lead to different bunkering 
amount and slightly different bunkering ports, i.e., the bunker-
ing amount and the number of bunkering ports decrease as 
the bunker price increases. This is because the ship speed 
is reduced to save the bunkering cost (fuel cost), which can 
be found from <Table 2> that the ship speed decreases as 
the bunker price increases. The speed reduction due to high 
bunker prices supports the slow steaming practice, and how-
ever, these speeds are much faster than the ships navigating 
around 16 knot due to the slow steaming practice in the current 
maritime industry. This may be because the slow steaming 
practice has become prevalent in the maritime industry in 

years when the oil price has been very high and after then, 
maritime companies did not increase their ship speed since 
the maritime industry was taking a serious turn for the worse.

Following, we study the effect of the container time value 
on the bunkering amount, the number of bunkering ports, 
and the ship speed. <Table 3> shows that the bunkering 
amount, the number of bunkering ports, and the ship speed 
increases along with the container time value. This is because 
cargos with high value require for quick delivery, i.e., high 
ship speed that results in increase of the bunkering amount 
and the number of bunkering ports since the bunker in the 
fuel tank is quickly consumed in case of a high ship speed. 
This implies that ships should speed up and bunker more 
when transporting high value products such as IT products. 
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Finally, we study the effect of the carbon tax summarized 
in <Table 4>, where zero carbon tax implies that no carbon 
tax is applied. The bunkering amount is 24,019.5 ton in case 
of zero carbon tax and it reduces to 7,547.6 ton in case of 
400$ in order to save the bunker consumption contributing 
to CO2 emissions. The same result is obtained in terms of 
the number of bunkering ports and the ship speed. This is 
because reducing the ship speed reduces the bunkering 
amount and the number of bunkering ports and as a result 
it lowers carbon tax charged to shipping companies. This 
implies that if a carbon tax regulation is realized in the ship-
ping industry, shipping companies slower their ships’ speed 
and reduces the bunkering amount and number of bunkering 
ports. 

 <Table 4> Best Bunkering and Ship Speed Strategies at 

Different Carbon Taxes

Carbon tax
($/tCO2)

Bunkering amount 
(1,000 ton)

Ship speed
(knots)

0 100 200 300 400 0 100 200 300 400

Hong Kong 6.1 3.3 2.4 2.1 2.1

27.4 20.0 17.1

16.0 16.0

Kaohsiung
Busan
Kobe
Tokyo
Balboa 5.4 2.7 1.9 1.7 1.7

28.8 24.4

20.2
Panama 17.6

Manzanillo 17.3
Miami

Jacksonville
Savannah
Charleston
New York
Rotterdam 10.3 6.3 4.5 3.8 3.8

29.1

20.6
17.4

Bremerhaven
Felixstowe 29.0
New York

29.1
Norfolk

Charleston 29.0
Manzanillo

29.1
17.6

Panama 24.4 20.2
Balboa 28.9

20.6 17.4
Los Angeles 2.2

29.1
Oakland
Tokyo

29.0
Kobe

Chiwan 29.1 24.4 20.2
Total bunkering 

amount 24.0 12.3 8.8 7.5 7.5 　 　 　 　 　

5. Concluding Remarks

In this study, we considered the problem of determining 
the ship speed, bunkering ports, and bunkering amount at 
the ports with the objective of minimizing the total cost of 
bunker purchase and ship time, and carbon tax. We for-
mulated the problem as a nonlinear lot-sizing model. To 
solve the problem, we suggested a Lagrangian heuristic by 
deriving a property for the relaxed problem. A case study 
was performed by taking the data from reliable sources and 
the test result showed that the heuristic is a viable tool re-
garding the gap from the lower bound and computation time. 
In addition, we analyzed the effects of bunker prices, carbon 
taxes, and ship time costs on the ship speed and number 
of bunkering ports. 

This research can be extended in several directions. First 
of all, global shipping firms proactively not only slow their 
ship speed in order to lower cope with operating costs caused 
by higher bunker price but also charter in additional ships 
in order to keep published weekly container services. There-
fore, the problem with the number of ships to be deployed 
is a meaningful future research topic. Second, this research 
considered the carbon tax for CO2 emission restriction and 
hence, the emission trading scheme, which is another option 
for the reduction is worthwhile to be considered in future 
research. Finally, the ship routing is also a very important 
decision issue for shipping companies and hence one may 
have to consider the ship routing, ship speed, and bunkering 
decision problem. 
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